BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28303404)

  • 1. Phylogenetic analysis of proteins involved in the stringent response in plant cells.
    Ito D; Ihara Y; Nishihara H; Masuda S
    J Plant Res; 2017 Jul; 130(4):625-634. PubMed ID: 28303404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life.
    Atkinson GC; Tenson T; Hauryliuk V
    PLoS One; 2011; 6(8):e23479. PubMed ID: 21858139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Within and beyond the stringent response-RSH and (p)ppGpp in plants.
    Boniecka J; Prusińska J; Dąbrowska GB; Goc A
    Planta; 2017 Nov; 246(5):817-842. PubMed ID: 28948393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signalling by the global regulatory molecule ppGpp in bacteria and chloroplasts of land plants.
    Tozawa Y; Nomura Y
    Plant Biol (Stuttg); 2011 Sep; 13(5):699-709. PubMed ID: 21815973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plastidial (p)ppGpp Synthesis by the Ca2+-Dependent RelA-SpoT Homolog Regulates the Adaptation of Chloroplast Gene Expression to Darkness in Arabidopsis.
    Ono S; Suzuki S; Ito D; Tagawa S; Shiina T; Masuda S
    Plant Cell Physiol; 2021 Feb; 61(12):2077-2086. PubMed ID: 33089303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Insights Into the Role of
    Rakshit D; Dasgupta S; Das B; Bhadra RK
    Front Microbiol; 2020; 11():564644. PubMed ID: 33117311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomics and evolution of genes encoding bacterial (p)ppGpp synthetases/hydrolases (the Rel, RelA and SpoT proteins).
    Mittenhuber G
    J Mol Microbiol Biotechnol; 2001 Oct; 3(4):585-600. PubMed ID: 11545276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and activity of PPX/GppA homologs from Escherichia coli and Helicobacter pylori.
    Song H; Dharmasena MN; Wang C; Shaw GX; Cherry S; Tropea JE; Jin DJ; Ji X
    FEBS J; 2020 May; 287(9):1865-1885. PubMed ID: 31679177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression profiling of four RelA/SpoT-like proteins, homologues of bacterial stringent factors, in Arabidopsis thaliana.
    Mizusawa K; Masuda S; Ohta H
    Planta; 2008 Sep; 228(4):553-62. PubMed ID: 18535838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional characterization of exopolyphosphatase/guanosine pentaphosphate phosphohydrolase (PPX/GPPA) of Campylobacter jejuni.
    Malde A; Gangaiah D; Chandrashekhar K; Pina-Mimbela R; Torrelles JB; Rajashekara G
    Virulence; 2014 May; 5(4):521-33. PubMed ID: 24569519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The bacterial stringent response, conserved in chloroplasts, controls plant fertilization.
    Masuda S; Mizusawa K; Narisawa T; Tozawa Y; Ohta H; Takamiya K
    Plant Cell Physiol; 2008 Feb; 49(2):135-41. PubMed ID: 18178586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete Loss of RelA and SpoT Homologs in Arabidopsis Reveals the Importance of the Plastidial Stringent Response in the Interplay between Chloroplast Metabolism and Plant Defense Response.
    Inazu M; Nemoto T; Omata Y; Suzuki S; Ono S; Kanno Y; Seo M; Oikawa A; Masuda S
    Plant Cell Physiol; 2024 May; 65(4):631-643. PubMed ID: 37925598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "PP2C7s", Genes Most Highly Elaborated in Photosynthetic Organisms, Reveal the Bacterial Origin and Stepwise Evolution of PPM/PP2C Protein Phosphatases.
    Kerk D; Silver D; Uhrig RG; Moorhead GB
    PLoS One; 2015; 10(8):e0132863. PubMed ID: 26241330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The two PPX-GppA homologues from Mycobacterium tuberculosis have distinct biochemical activities.
    Choi MY; Wang Y; Wong LL; Lu BT; Chen WY; Huang JD; Tanner JA; Watt RM
    PLoS One; 2012; 7(8):e42561. PubMed ID: 22880033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacteria possessing two RelA/SpoT-like proteins have evolved a specific stringent response involving the acyl carrier protein-SpoT interaction.
    Battesti A; Bouveret E
    J Bacteriol; 2009 Jan; 191(2):616-24. PubMed ID: 18996989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of RelA/SpoT homologs, PpRSH2a and PpRSH2b, induces the growth suppression of the moss Physcomitrella patens.
    Sato M; Takahashi T; Ochi K; Matsuura H; Nabeta K; Takahashi K
    Biosci Biotechnol Biochem; 2015; 79(1):36-44. PubMed ID: 25228236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inducible expression, enzymatic activity, and origin of higher plant homologues of bacterial RelA/SpoT stress proteins in Nicotiana tabacum.
    Givens RM; Lin MH; Taylor DJ; Mechold U; Berry JO; Hernandez VJ
    J Biol Chem; 2004 Feb; 279(9):7495-504. PubMed ID: 14660585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the (p)ppGpp synthase RSH, a RelA/SpoT homolog, in stringent response and virulence of Staphylococcus aureus.
    Geiger T; Goerke C; Fritz M; Schäfer T; Ohlsen K; Liebeke M; Lalk M; Wolz C
    Infect Immun; 2010 May; 78(5):1873-83. PubMed ID: 20212088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RSH enzyme diversity for (p)ppGpp metabolism in Phaeodactylum tricornutum and other diatoms.
    Avilan L; Puppo C; Villain A; Bouveret E; Menand B; Field B; Gontero B
    Sci Rep; 2019 Nov; 9(1):17682. PubMed ID: 31776430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Silico Study of the
    Dąbrowska GB; Turkan S; Tylman-Mojżeszek W; Mierek-Adamska A
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.