BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 28303459)

  • 1. CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis.
    Chen Y; Wang Z; Ni H; Xu Y; Chen Q; Jiang L
    Sci China Life Sci; 2017 May; 60(5):520-523. PubMed ID: 28303459
    [No Abstract]   [Full Text] [Related]  

  • 2. Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants.
    Osakabe Y; Watanabe T; Sugano SS; Ueta R; Ishihara R; Shinozaki K; Osakabe K
    Sci Rep; 2016 May; 6():26685. PubMed ID: 27226176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Highly Efficient Cell Division-Specific CRISPR/Cas9 System Generates Homozygous Mutants for Multiple Genes in
    Feng Z; Zhang Z; Hua K; Gao X; Mao Y; Botella JR; Zhu JK
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30544514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid Construction of Multiplexed CRISPR-Cas9 Systems for Plant Genome Editing.
    Lowder L; Malzahn A; Qi Y
    Methods Mol Biol; 2017; 1578():291-307. PubMed ID: 28220435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system.
    Zhang Y; Qin W; Lu X; Xu J; Huang H; Bai H; Li S; Lin S
    Nat Commun; 2017 Jul; 8(1):118. PubMed ID: 28740134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pKAMA-ITACHI Vectors for Highly Efficient CRISPR/Cas9-Mediated Gene Knockout in Arabidopsis thaliana.
    Tsutsui H; Higashiyama T
    Plant Cell Physiol; 2017 Jan; 58(1):46-56. PubMed ID: 27856772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of rice essential genes by characterizing a CRISPR-edited mutation of closely related rice MAP kinase genes.
    Minkenberg B; Xie K; Yang Y
    Plant J; 2017 Feb; 89(3):636-648. PubMed ID: 27747971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of imidazolinone herbicide resistant trait in Arabidopsis.
    Dong H; Wang D; Bai Z; Yuan Y; Yang W; Zhang Y; Ni H; Jiang L
    PLoS One; 2020; 15(5):e0233503. PubMed ID: 32442184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design.
    Zhao Y; Zhang C; Liu W; Gao W; Liu C; Song G; Li WX; Mao L; Chen B; Xu Y; Li X; Xie C
    Sci Rep; 2016 Apr; 6():23890. PubMed ID: 27033976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9: an advanced tool for editing plant genomes.
    Samanta MK; Dey A; Gayen S
    Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective inheritance of target genes from only one parent of sexually reproduced F1 progeny in Arabidopsis.
    Zhang T; Mudgett M; Rambabu R; Abramson B; Dai X; Michael TP; Zhao Y
    Nat Commun; 2021 Jun; 12(1):3854. PubMed ID: 34158505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems.
    Papikian A; Liu W; Gallego-Bartolomé J; Jacobsen SE
    Nat Commun; 2019 Feb; 10(1):729. PubMed ID: 30760722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased lateral root formation by CRISPR/Cas9-mediated editing of arginase genes in cotton.
    Wang Y; Meng Z; Liang C; Meng Z; Wang Y; Sun G; Zhu T; Cai Y; Guo S; Zhang R; Lin Y
    Sci China Life Sci; 2017 May; 60(5):524-527. PubMed ID: 28527115
    [No Abstract]   [Full Text] [Related]  

  • 14. Rapid and efficient CRISPR/Cas9 gene editing in Citrus using the YAO promoter.
    Zhang F; LeBlanc C; Irish VF; Jacob Y
    Plant Cell Rep; 2017 Dec; 36(12):1883-1887. PubMed ID: 28864834
    [No Abstract]   [Full Text] [Related]  

  • 15. High efficiency of targeted mutagenesis in arabidopsis via meiotic promoter-driven expression of Cas9 endonuclease.
    Eid A; Ali Z; Mahfouz MM
    Plant Cell Rep; 2016 Jul; 35(7):1555-8. PubMed ID: 27236699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristic and inheritance analysis of targeted mutagenesis mediated by genome editing in rice.
    Tang L; Li YK; Zhang D; Mao BG; Lv QM; Hu YY; Shao Y; Peng Y; Zhao BR; Xia ST
    Yi Chuan; 2016 Aug; 38(8):746-55. PubMed ID: 27531613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bypassing GMO regulations with CRISPR gene editing.
    Kim J; Kim JS
    Nat Biotechnol; 2016 Oct; 34(10):1014-1015. PubMed ID: 27727209
    [No Abstract]   [Full Text] [Related]  

  • 18. Generation of chromosomal deletions in dicotyledonous plants employing a user-friendly genome editing toolkit.
    Ordon J; Gantner J; Kemna J; Schwalgun L; Reschke M; Streubel J; Boch J; Stuttmann J
    Plant J; 2017 Jan; 89(1):155-168. PubMed ID: 27579989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of CRISPR/Cas9 system in breeding of new antiviral plant germplasm.
    Zhang DW; Zhang CF; Dong F; Huang YL; Zhang Y; Zhou H
    Yi Chuan; 2016 Sep; 38(9):811-20. PubMed ID: 27644742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anything impossible with CRISPR/Cas9?
    Jiao R; Gao C
    Sci China Life Sci; 2017 May; 60(5):445-446. PubMed ID: 28573353
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.