These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
402 related articles for article (PubMed ID: 28303652)
1. Photoperiod cues and patterns of genetic variation limit phenological responses to climate change in warm parts of species' range: Modeling diameter-growth cessation in coast Douglas-fir. Ford KR; Harrington CA; St Clair JB Glob Chang Biol; 2017 Aug; 23(8):3348-3362. PubMed ID: 28303652 [TBL] [Abstract][Full Text] [Related]
2. Will changes in phenology track climate change? A study of growth initiation timing in coast Douglas-fir. Ford KR; Harrington CA; Bansal S; Gould PJ; St Clair JB Glob Chang Biol; 2016 Nov; 22(11):3712-3723. PubMed ID: 27104650 [TBL] [Abstract][Full Text] [Related]
3. Impact of climate change on cold hardiness of Douglas-fir (Pseudotsuga menziesii): environmental and genetic considerations. Bansal S; St Clair JB; Harrington CA; Gould PJ Glob Chang Biol; 2015 Oct; 21(10):3814-26. PubMed ID: 25920066 [TBL] [Abstract][Full Text] [Related]
4. Genecology of Douglas fir in western Oregon and Washington. St Clair JB; Mandel NL; Vance-Borland KW Ann Bot; 2005 Dec; 96(7):1199-214. PubMed ID: 16246849 [TBL] [Abstract][Full Text] [Related]
6. The joint influence of photoperiod and temperature during growth cessation and development of dormancy in white spruce (Picea glauca). Hamilton JA; El Kayal W; Hart AT; Runcie DE; Arango-Velez A; Cooke JE Tree Physiol; 2016 Nov; 36(11):1432-1448. PubMed ID: 27449791 [TBL] [Abstract][Full Text] [Related]
7. Growth phenology of coast Douglas-fir seed sources planted in diverse environments. Gould PJ; Harrington CA; St Clair JB Tree Physiol; 2012 Dec; 32(12):1482-96. PubMed ID: 23135739 [TBL] [Abstract][Full Text] [Related]
8. Changing climate cues differentially alter zooplankton dormancy dynamics across latitudes. Jones NT; Gilbert B J Anim Ecol; 2016 Mar; 85(2):559-69. PubMed ID: 26590065 [TBL] [Abstract][Full Text] [Related]
9. Differential use of winter precipitation by upper and lower elevation Douglas fir in the Northern Rockies. Martin J; Looker N; Hoylman Z; Jencso K; Hu J Glob Chang Biol; 2018 Dec; 24(12):5607-5621. PubMed ID: 30192433 [TBL] [Abstract][Full Text] [Related]
10. Transcription through the eye of a needle: daily and annual cyclic gene expression variation in Douglas-fir needles. Cronn R; Dolan PC; Jogdeo S; Wegrzyn JL; Neale DB; St Clair JB; Denver DR BMC Genomics; 2017 Jul; 18(1):558. PubMed ID: 28738815 [TBL] [Abstract][Full Text] [Related]
11. Ongoing seasonally uneven climate warming leads to earlier autumn growth cessation in deciduous trees. Zohner CM; Renner SS Oecologia; 2019 Feb; 189(2):549-561. PubMed ID: 30684009 [TBL] [Abstract][Full Text] [Related]
12. Antagonistic effects of growing season and autumn temperatures on the timing of leaf coloration in winter deciduous trees. Liu G; Chen X; Zhang Q; Lang W; Delpierre N Glob Chang Biol; 2018 Aug; 24(8):3537-3545. PubMed ID: 29460318 [TBL] [Abstract][Full Text] [Related]
13. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming. Marchin RM; Salk CF; Hoffmann WA; Dunn RR Glob Chang Biol; 2015 Aug; 21(8):3138-51. PubMed ID: 25736981 [TBL] [Abstract][Full Text] [Related]
14. From observations to experiments in phenology research: investigating climate change impacts on trees and shrubs using dormant twigs. Primack RB; Laube J; Gallinat AS; Menzel A Ann Bot; 2015 Nov; 116(6):889-97. PubMed ID: 25851135 [TBL] [Abstract][Full Text] [Related]
15. Intra-specific variation in growth and wood density traits under water-limited conditions: Long-term-, short-term-, and sudden responses of four conifer tree species. George JP; Grabner M; Campelo F; Karanitsch-Ackerl S; Mayer K; Klumpp RT; Schüler S Sci Total Environ; 2019 Apr; 660():631-643. PubMed ID: 30641392 [TBL] [Abstract][Full Text] [Related]
16. Timing of photoperiodic competency causes phenological mismatch in balsam poplar (Populus balsamifera L.). Soolanayakanahally RY; Guy RD; Silim SN; Song M Plant Cell Environ; 2013 Jan; 36(1):116-27. PubMed ID: 22702736 [TBL] [Abstract][Full Text] [Related]
17. A catalogue of putative unique transcripts from Douglas-fir (Pseudotsuga menziesii) based on 454 transcriptome sequencing of genetically diverse, drought stressed seedlings. Müller T; Ensminger I; Schmid KJ BMC Genomics; 2012 Nov; 13():673. PubMed ID: 23190494 [TBL] [Abstract][Full Text] [Related]
18. Forest stand productivity derived from site conditions: an assessment of old Douglas-fir stands ( Eckhart T; Pötzelsberger E; Koeck R; Thom D; Lair GJ; van Loo M; Hasenauer H Ann For Sci; 2019; 76(1):19. PubMed ID: 30881192 [TBL] [Abstract][Full Text] [Related]
19. Effect of test environment on expression of clines and on delimitation of seed zones in Douglas-fir. Campbell RK; Sorensen FC Theor Appl Genet; 1978 Sep; 51(5):233-46. PubMed ID: 24317810 [TBL] [Abstract][Full Text] [Related]
20. Elevational adaptation and plasticity in seedling phenology of temperate deciduous tree species. Vitasse Y; Hoch G; Randin CF; Lenz A; Kollas C; Scheepens JF; Körner C Oecologia; 2013 Mar; 171(3):663-78. PubMed ID: 23306445 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]