BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 28303687)

  • 41. Recent Advances on Conductive 2D Covalent Organic Frameworks.
    Bian G; Yin J; Zhu J
    Small; 2021 Jun; 17(22):e2006043. PubMed ID: 33624949
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies.
    Dalapati S; Addicoat M; Jin S; Sakurai T; Gao J; Xu H; Irle S; Seki S; Jiang D
    Nat Commun; 2015 Jul; 6():7786. PubMed ID: 26178865
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nucleic acid/organic polymer hybrid materials: synthesis, superstructures, and applications.
    Kwak M; Herrmann A
    Angew Chem Int Ed Engl; 2010 Nov; 49(46):8574-87. PubMed ID: 20845335
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Carbon- and Nitrogen-Based Organic Frameworks.
    Sakaushi K; Antonietti M
    Acc Chem Res; 2015 Jun; 48(6):1591-600. PubMed ID: 26000989
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Radical covalent organic frameworks: a general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage.
    Xu F; Xu H; Chen X; Wu D; Wu Y; Liu H; Gu C; Fu R; Jiang D
    Angew Chem Int Ed Engl; 2015 Jun; 54(23):6814-8. PubMed ID: 25908404
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage.
    Xu F; Jin S; Zhong H; Wu D; Yang X; Chen X; Wei H; Fu R; Jiang D
    Sci Rep; 2015 Feb; 5():8225. PubMed ID: 25650133
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Covalent organic frameworks formed with two types of covalent bonds based on orthogonal reactions.
    Zeng Y; Zou R; Luo Z; Zhang H; Yao X; Ma X; Zou R; Zhao Y
    J Am Chem Soc; 2015 Jan; 137(3):1020-3. PubMed ID: 25581488
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Two-dimensional tetrathiafulvalene covalent organic frameworks: towards latticed conductive organic salts.
    Jin S; Sakurai T; Kowalczyk T; Dalapati S; Xu F; Wei H; Chen X; Gao J; Seki S; Irle S; Jiang D
    Chemistry; 2014 Nov; 20(45):14608-13. PubMed ID: 24782435
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage.
    Zhou J; Wang B
    Chem Soc Rev; 2017 Nov; 46(22):6927-6945. PubMed ID: 28956880
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Donor-Acceptor Type Covalent Organic Frameworks.
    Zhao J; Ren J; Zhang G; Zhao Z; Liu S; Zhang W; Chen L
    Chemistry; 2021 Jul; 27(42):10781-10797. PubMed ID: 34002911
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Systematic Tuning and Multifunctionalization of Covalent Organic Polymers for Enhanced Carbon Capture.
    Xiang Z; Mercado R; Huck JM; Wang H; Guo Z; Wang W; Cao D; Haranczyk M; Smit B
    J Am Chem Soc; 2015 Oct; 137(41):13301-7. PubMed ID: 26412410
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A tetrathiafulvalene-based electroactive covalent organic framework.
    Ding H; Li Y; Hu H; Sun Y; Wang J; Wang C; Wang C; Zhang G; Wang B; Xu W; Zhang D
    Chemistry; 2014 Nov; 20(45):14614-8. PubMed ID: 25266337
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chiral covalent organic frameworks: design, synthesis and property.
    Han X; Yuan C; Hou B; Liu L; Li H; Liu Y; Cui Y
    Chem Soc Rev; 2020 Sep; 49(17):6248-6272. PubMed ID: 32724943
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of Metal-Organic Frameworks and Porous Polymer Networks for CO2 -Capture Applications.
    Verdegaal WM; Wang K; Sculley JP; Wriedt M; Zhou HC
    ChemSusChem; 2016 Mar; 9(6):636-43. PubMed ID: 26840979
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effect of structural and energetic parameters of MOFs and COFs towards the improvement of their hydrogen storage properties.
    Tylianakis E; Klontzas E; Froudakis GE
    Nanotechnology; 2009 May; 20(20):204030. PubMed ID: 19420678
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Redox-Active Organic Materials: From Energy Storage to Redox Catalysis.
    Kim J; Ling J; Lai Y; Milner PJ
    ACS Mater Au; 2024 May; 4(3):258-273. PubMed ID: 38737116
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Precision Construction of 2D Heteropore Covalent Organic Frameworks by a Multiple-Linking-Site Strategy.
    Qian C; Xu SQ; Jiang GF; Zhan TG; Zhao X
    Chemistry; 2016 Dec; 22(49):17784-17789. PubMed ID: 27778380
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rapid and efficient redox processes within 2D covalent organic framework thin films.
    DeBlase CR; Hernández-Burgos K; Silberstein KE; Rodríguez-Calero GG; Bisbey RP; Abruña HD; Dichtel WR
    ACS Nano; 2015 Mar; 9(3):3178-83. PubMed ID: 25672785
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Macromolecular architectures for organic photovoltaics.
    Popere BC; Della Pelle AM; Poe A; Thayumanavan S
    Phys Chem Chem Phys; 2012 Mar; 14(12):4043-57. PubMed ID: 22331104
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Porous organic molecules.
    Holst JR; Trewin A; Cooper AI
    Nat Chem; 2010 Nov; 2(11):915-20. PubMed ID: 20966946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.