These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 28304076)

  • 21. Brain stem integration of vocalization: role of the nucleus retroambigualis.
    Zhang SP; Bandler R; Davis PJ
    J Neurophysiol; 1995 Dec; 74(6):2500-12. PubMed ID: 8747209
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vocalizations by a sexually dimorphic isolated larynx: peripheral constraints on behavioral expression.
    Tobias ML; Kelley DB
    J Neurosci; 1987 Oct; 7(10):3191-7. PubMed ID: 3668623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The roles of sex, innervation, and androgen in laryngeal muscle of Xenopus laevis.
    Tobias ML; Marin ML; Kelley DB
    J Neurosci; 1993 Jan; 13(1):324-33. PubMed ID: 8423478
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of treadmill running on aging laryngeal muscle structure.
    Kletzien H; Russell JA; Connor NP
    Laryngoscope; 2016 Mar; 126(3):672-7. PubMed ID: 26256100
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional electrical stimulation of laryngeal adductor muscle restores mobility of vocal fold and improves voice sounds in cats with unilateral laryngeal paralysis.
    Katada A; Nonaka S; Adachi M; Kunibe I; Arakawa T; Imada M; Hayashi T; Zealear DL; Harabuchi Y
    Neurosci Res; 2004 Oct; 50(2):153-9. PubMed ID: 15380322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Types and functions of ultrasonic vocalizations in laboratory rats and mice.
    Portfors CV
    J Am Assoc Lab Anim Sci; 2007 Jan; 46(1):28-34. PubMed ID: 17203913
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrophysiology and dye-coupling are sexually dimorphic characteristics of individual laryngeal muscle fibers in Xenopus laevis.
    Tobias ML; Kelley DB
    J Neurosci; 1988 Jul; 8(7):2422-9. PubMed ID: 3249234
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Age-related alterations in myosin heavy chain isoforms in rat intrinsic laryngeal muscles.
    Suzuki T; Connor NP; Lee K; Bless DM; Ford CN; Inagi K
    Ann Otol Rhinol Laryngol; 2002 Nov; 111(11):962-7. PubMed ID: 12450167
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Embryologic innervation of the rat laryngeal musculature--a model for investigation of recurrent laryngeal nerve reinnervation.
    Pitman MJ; Berzofsky CE; Alli O; Sharma S
    Laryngoscope; 2013 Dec; 123(12):3117-26. PubMed ID: 23712780
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atypical myosin heavy chain in rat laryngeal muscle.
    DelGaudio JM; Sciote JJ; Carroll WR; Escalmado RM
    Ann Otol Rhinol Laryngol; 1995 Mar; 104(3):237-45. PubMed ID: 7872608
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Androgen regulation of muscle fiber type in the sexually dimorphic larynx of Xenopus laevis.
    Sassoon DA; Gray GE; Kelley DB
    J Neurosci; 1987 Oct; 7(10):3198-206. PubMed ID: 3668624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sexual Dimorphism in Laryngeal Volumetric Measurements Using Magnetic Resonance Imaging.
    Hamdan AL; Khalifee E; Ziade G; Semaan S
    Ear Nose Throat J; 2020 Feb; 99(2):132-136. PubMed ID: 31018691
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteomic Characterization of Senescent Laryngeal Adductor and Plantaris Hindlimb Muscles.
    Shembel AC; Kanshin E; Ueberheide B; Johnson AM
    Laryngoscope; 2022 Jan; 132(1):148-155. PubMed ID: 34115877
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Laterality in syrinx muscle morphology of the Japanese quail (Coturnix japonica).
    Burke MR; Adkins-Regan E; Wade J
    Physiol Behav; 2007 Mar; 90(4):682-6. PubMed ID: 17258241
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Function of the laryngeal muscles in the control of the fundamental frequency of voice].
    Ayache S; Fernandes M; Ouaknine M; Giovanni A
    Ann Otolaryngol Chir Cervicofac; 2002 Sep; 119(4):243-51. PubMed ID: 12410121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fiber differentiation of the human laryngeal muscles using the inhibition reactivation myofibrillar ATPase technique.
    Claassen H; Werner JA
    Anat Embryol (Berl); 1992 Sep; 186(4):341-6. PubMed ID: 1416083
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Muscle spindles are concentrated in the superior vocalis subcompartment of the human thyroarytenoid muscle.
    Sanders I; Han Y; Wang J; Biller H
    J Voice; 1998 Mar; 12(1):7-16. PubMed ID: 9619974
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stereotypic laryngeal and respiratory motor patterns generate different call types in rat ultrasound vocalization.
    Riede T
    J Exp Zool A Ecol Genet Physiol; 2013 Apr; 319(4):213-24. PubMed ID: 23423862
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Androgen-induced vocal transformation in adult female African clawed frogs.
    Potter KA; Bose T; Yamaguchi A
    J Neurophysiol; 2005 Jul; 94(1):415-28. PubMed ID: 15758050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chronic stimulation-induced changes in the rodent thyroarytenoid muscle.
    McMullen CA; Butterfield TA; Dietrich M; Andreatta RD; Andrade FH; Fry L; Stemple JC
    J Speech Lang Hear Res; 2011 Jun; 54(3):845-53. PubMed ID: 21106694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.