These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 2830460)
1. Nucleotide homology and organization of chlorocatechol oxidation genes of plasmids pJP4 and pAC27. Ghosal D; You IS Mol Gen Genet; 1988 Jan; 211(1):113-20. PubMed ID: 2830460 [TBL] [Abstract][Full Text] [Related]
2. Operon structure and nucleotide homology of the chlorocatechol oxidation genes of plasmids pJP4 and pAC27. Ghosal D; You IS Gene; 1989 Nov; 83(2):225-32. PubMed ID: 2583528 [TBL] [Abstract][Full Text] [Related]
3. Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4. Perkins EJ; Gordon MP; Caceres O; Lurquin PF J Bacteriol; 1990 May; 172(5):2351-9. PubMed ID: 2185214 [TBL] [Abstract][Full Text] [Related]
4. Sequence analysis of the Pseudomonas sp. strain P51 tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialization of catechol 1,2-dioxygenases for chlorinated substrates. van der Meer JR; Eggen RI; Zehnder AJ; de Vos WM J Bacteriol; 1991 Apr; 173(8):2425-34. PubMed ID: 2013566 [TBL] [Abstract][Full Text] [Related]
5. Organization and nucleotide sequence determination of a gene cluster involved in 3-chlorocatechol degradation. Frantz B; Chakrabarty AM Proc Natl Acad Sci U S A; 1987 Jul; 84(13):4460-4. PubMed ID: 3299368 [TBL] [Abstract][Full Text] [Related]
6. Genes specifying degradation of 3-chlorobenzoic acid in plasmids pAC27 and pJP4. Ghosal D; You IS; Chatterjee DK; Chakrabarty AM Proc Natl Acad Sci U S A; 1985 Mar; 82(6):1638-42. PubMed ID: 3856842 [TBL] [Abstract][Full Text] [Related]
7. Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134(pJP4). Don RH; Weightman AJ; Knackmuss HJ; Timmis KN J Bacteriol; 1985 Jan; 161(1):85-90. PubMed ID: 2981813 [TBL] [Abstract][Full Text] [Related]
8. Efficient turnover of chlorocatechols is essential for growth of Ralstonia eutropha JMP134(pJP4) in 3-chlorobenzoic acid. Pérez-Pantoja D; Ledger T; Pieper DH; González B J Bacteriol; 2003 Mar; 185(5):1534-42. PubMed ID: 12591870 [TBL] [Abstract][Full Text] [Related]
9. Sequence of the plasmid-encoded catechol 1,2-dioxygenase-expressing gene, pheB, of phenol-degrading Pseudomonas sp. strain EST1001. Kivisaar M; Kasak L; Nurk A Gene; 1991 Feb; 98(1):15-20. PubMed ID: 2013408 [TBL] [Abstract][Full Text] [Related]
10. Cloning and sequencing of the catechol 2,3-dioxygenase gene of Alcaligenes sp. KF711. Moon J; Chang H; Min KR; Kim Y Biochem Biophys Res Commun; 1995 Mar; 208(3):943-9. PubMed ID: 7702624 [TBL] [Abstract][Full Text] [Related]
11. Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31. Mars AE; Kingma J; Kaschabek SR; Reineke W; Janssen DB J Bacteriol; 1999 Feb; 181(4):1309-18. PubMed ID: 9973359 [TBL] [Abstract][Full Text] [Related]
12. Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134(pJP4). Laemmli CM; Leveau JH; Zehnder AJ; van der Meer JR J Bacteriol; 2000 Aug; 182(15):4165-72. PubMed ID: 10894723 [TBL] [Abstract][Full Text] [Related]
13. Identification and characterization of a new plasmid carrying genes for degradation of 2,4-dichlorophenoxyacetate from Pseudomonas cepacia CSV90. Bhat MA; Tsuda M; Horiike K; Nozaki M; Vaidyanathan CS; Nakazawa T Appl Environ Microbiol; 1994 Jan; 60(1):307-12. PubMed ID: 7509586 [TBL] [Abstract][Full Text] [Related]
14. The chlorocatechol degradative genes, tfdT-CDEF, of Burkholderia sp. strain NK8 are involved in chlorobenzoate degradation and induced by chlorobenzoates and chlorocatechols. Liu S; Ogawa N; Miyashita K Gene; 2001 May; 268(1-2):207-14. PubMed ID: 11368916 [TBL] [Abstract][Full Text] [Related]
15. Duplication of a 2,4-dichlorophenoxyacetic acid monooxygenase gene in Alcaligenes eutrophus JMP134(pJP4). Perkins EJ; Lurquin PF J Bacteriol; 1988 Dec; 170(12):5669-72. PubMed ID: 3056910 [TBL] [Abstract][Full Text] [Related]
17. The tfdR gene product can successfully take over the role of the insertion element-inactivated TfdT protein as a transcriptional activator of the tfdCDEF gene cluster, which encodes chlorocatechol degradation in Ralstonia eutropha JMP134(pJP4). Leveau JH; van der Meer JR J Bacteriol; 1996 Dec; 178(23):6824-32. PubMed ID: 8955303 [TBL] [Abstract][Full Text] [Related]
18. Characterization of catechol- and chlorocatechol-degrading activity in the ortho-chlorinated benzoic acid-degrading Pseudomonas sp. CPE2 strain. Di Gioia D; Fava F; Baldoni F; Marchetti L Res Microbiol; 1998 May; 149(5):339-48. PubMed ID: 9766234 [TBL] [Abstract][Full Text] [Related]
19. Role of tfdC(I)D(I)E(I)F(I) and tfdD(II)C(II)E(II)F(II) gene modules in catabolism of 3-chlorobenzoate by Ralstonia eutropha JMP134(pJP4). Pérez-Pantoja D; Guzmán L; Manzano M; Pieper DH; González B Appl Environ Microbiol; 2000 Apr; 66(4):1602-8. PubMed ID: 10742248 [TBL] [Abstract][Full Text] [Related]
20. Regulation of tfdCDEF by tfdR of the 2,4-dichlorophenoxyacetic acid degradation plasmid pJP4. Kaphammer B; Kukor JJ; Olsen RH J Bacteriol; 1990 May; 172(5):2280-6. PubMed ID: 2158967 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]