These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28305287)

  • 1. Gap junctions are non-randomly distributed inDrosophila wing discs.
    Ryerse JS
    Wilehm Roux Arch Dev Biol; 1982 Sep; 191(5):335-339. PubMed ID: 28305287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the distribution of gap junctions inDrosophila melanogaster wing discs during the third larval and early pupal stages of development.
    Stephen Ryerse J; Ann Nagel B
    Wilehm Roux Arch Dev Biol; 1984 Jul; 193(4):187-196. PubMed ID: 28305213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gap junction distribution in the Drosophila wing disc mutants vg, l(2)gd, l(3)c43hs1, and l(2)gl4.
    Ryerse JS; Nagel BA
    Dev Biol; 1984 Oct; 105(2):396-403. PubMed ID: 6434357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ultrastructure of the developing leg ofDrosophila melanogaster.
    Poodry CA; Schneiderman HA
    Wilhelm Roux Arch Entwickl Mech Org; 1970 Mar; 166(1):1-44. PubMed ID: 28304536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histological analysis of the dynamics of growth of imaginal discs and histoblast nests during the larval development ofDrosophila melanogaster.
    Mandaravally Madhavan M; Schneiderman HA
    Wilehm Roux Arch Dev Biol; 1977 Dec; 183(4):269-305. PubMed ID: 28304865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defective gap-junctional communication associated with imaginal disc overgrowth and degeneration caused by mutations of the dco gene in Drosophila.
    Jursnich VA; Fraser SE; Held LI; Ryerse J; Bryant PJ
    Dev Biol; 1990 Aug; 140(2):413-29. PubMed ID: 2373260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gap-junction quantification in biological tissues: freeze-fracture replicas versus thin sections.
    Ryerse JS; Nagel BA
    J Microsc; 1991 Jul; 163(Pt 1):65-78. PubMed ID: 1920396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apposition of iroquois expressing and non-expressing cells leads to cell sorting and fold formation in the Drosophila imaginal wing disc.
    Villa-Cuesta E; González-Pérez E; Modolell J
    BMC Dev Biol; 2007 Sep; 7():106. PubMed ID: 17880703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulative interaction of mature imaginal disc Fragments with embryonic and immature disc tissues inDrosophila.
    Fain MJ; Schneiderman HA
    Wilehm Roux Arch Dev Biol; 1979 Mar; 187(1):1-11. PubMed ID: 28304916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The spatial expression ofDrosophila rotund gene reveals that the imaginal discs are organized in domains along the proximal-distal axis.
    Agnel M; Röder L; Griffin-Shea R; Vola C
    Rouxs Arch Dev Biol; 1992 Sep; 201(5):284-295. PubMed ID: 28305832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intercellular adhesivity and pupal morphogenesis inDrosophila melanogaster.
    Poodry CA; Schneiderman HA
    Wilhelm Roux Arch Entwickl Mech Org; 1971 Mar; 168(1):1-9. PubMed ID: 28304680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlations between developmental capacity and structure of tissue sublines derived from the eye-antennal imaginal disc ofDrosophila melanogaster.
    Gateff E; Akai H; Schneiderman HA
    Wilhelm Roux Arch Entwickl Mech Org; 1974 Dec; 176(2):89-123. PubMed ID: 28304837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intercellular junctions during development and in tissue cultures ofDrosophila melanogaster: An electron-microscopic study.
    Eichenberger-Glinz S
    Wilehm Roux Arch Dev Biol; 1979 Dec; 186(4):333-349. PubMed ID: 28305133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular, phenotypic, and expression analysis of vein, a gene required for growth of the Drosophila wing disc.
    Simcox AA; Grumbling G; Schnepp B; Bennington-Mathias C; Hersperger E; Shearn A
    Dev Biol; 1996 Aug; 177(2):475-89. PubMed ID: 8806825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transdetermination in the homeotic eye--antenna imaginal disc of Drosophila melanogaster.
    Schmid H
    Dev Biol; 1985 Jan; 107(1):28-37. PubMed ID: 3917414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The embryonic organization of the imaginal wing disc ofDrosophila melanogaster.
    Ripoll P
    Wilhelm Roux Arch Entwickl Mech Org; 1972 Sep; 169(3):200-215. PubMed ID: 28304625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of connexon aggregate fusion in gap junction growth.
    Ryerse JS; Nagel BA; Hammel I
    J Submicrosc Cytol; 1984 Oct; 16(4):649-57. PubMed ID: 6094843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. decapentaplegic overexpression affects Drosophila wing and leg imaginal disc development and wingless expression.
    Morimura S; Maves L; Chen Y; Hoffmann FM
    Dev Biol; 1996 Jul; 177(1):136-51. PubMed ID: 8660883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pattern formation in the imaginal wing disc of Drosophila melanogaster: fate map, regeneration and duplication.
    Bryant PJ
    J Exp Zool; 1975 Jul; 193(1):49-77. PubMed ID: 806653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wg and Egfr signalling antagonise the development of the peripodial epithelium in Drosophila wing discs.
    Baena-López LA; Pastor-Pareja JC; Resino J
    Development; 2003 Dec; 130(26):6497-506. PubMed ID: 14660540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.