BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 28305346)

  • 1. Distribution and redistribution of pigment granules in the development of sea urchin embryos.
    Tanaka Y
    Wilehm Roux Arch Dev Biol; 1981 Sep; 190(5):267-273. PubMed ID: 28305346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EFFECTS OF THE SURFACTANTS ON THE CLEAVAGE AND FURTHER DEVELOPMENT OF THE SEA URCHIN EMBRYOS 1. THE INHIBITION OF MICROMERE FORMATION AT THE FOURTH CLEAVAGE.
    Tanaka Y
    Dev Growth Differ; 1976; 18(2):113-122. PubMed ID: 37282012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EFFECTS OF CHEMICAL REAGENTS ON THE CYCLIC CHANGES OF CORTEX AND CYTOPLASM IN THE ACTIVATED ENUCLEATED EGG-FRAGMENTS OF THE SEA URCHIN.
    Kojima MK
    Dev Growth Differ; 1980; 22(3):415-420. PubMed ID: 37281240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential behavior of centrosomes in unequally dividing blastomeres during fourth cleavage of sea urchin embryos.
    Holy J; Schatten G
    J Cell Sci; 1991 Mar; 98 ( Pt 3)():423-31. PubMed ID: 2055969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos.
    Ishizuka Y; Minokawa T; Amemiya S
    Dev Genes Evol; 2001 Feb; 211(2):83-8. PubMed ID: 11455418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EFFECTS OF THE SURFACTANTS ON THE CLEAVAGE AND FURTHER DEVELOPMENT OF THE SEA URCHIN EMBRYOS II. DISTURBANCE IN THE ARRANGEMENT OF CORTICAL VESICLES AND CHANGE IN CORTICAL APPEARANCE.
    Tanaka Y
    Dev Growth Differ; 1979; 21(4):331-342. PubMed ID: 37281464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of yolk proteins in sea urchin eggs and embryos.
    Yokota Y; Kato KH
    Cell Differ; 1988 Apr; 23(3):191-200. PubMed ID: 3378269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of dorso-ventral axis in early embryos of the sea urchin, Hemicentrotus pulcherrimus.
    Kominami T
    Dev Biol; 1988 May; 127(1):187-96. PubMed ID: 3360211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SPICULE FORMATION IN VITRO BY THE DESCENDANTS OF PRECOCIOUS MICROMERE FORMED AT THE 8-CELL STAGE OF SEA URCHIN EMBRYO.
    Kitajima T; Okazaki K
    Dev Growth Differ; 1980; 22(3):265-279. PubMed ID: 37281606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of microtubule- and microfilament-disrupting drugs on preimplantation mouse embryos.
    Siracusa G; Whittingham DG; De Felici M
    J Embryol Exp Morphol; 1980 Dec; 60():71-82. PubMed ID: 7198136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A "micromere model" of cellular interactions in sea urchin embryos].
    Shmukler IuB
    Biofizika; 2010; 55(3):451-9. PubMed ID: 20586324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contact-independent polarization of the cell surface and cortex of free sea urchin blastomeres.
    Schroeder TE
    Dev Biol; 1988 Feb; 125(2):255-64. PubMed ID: 3338614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear migration and spindle formation in the fourth cleavage of sea urchin eggs under the influence of inhibitors.
    Czihak G; Kojima MK
    Cell Struct Funct; 1992 Apr; 17(2):145-50. PubMed ID: 1606622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarization of the Surface Membrane and Cortical Layer of Sea Urchin Blastomeres, and its Inhibition by Cytochalasin B: (post-cleavage surface movements/cortical microfilaments/egg-surface antibody/cytochalasin B/sea-urchin blastomeres).
    Yazaki I
    Dev Growth Differ; 1991 Jun; 33(3):267-276. PubMed ID: 37280809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meis transcription factor maintains the neurogenic ectoderm and regulates the anterior-posterior patterning in embryos of a sea urchin, Hemicentrotus pulcherrimus.
    Yaguchi J; Yamazaki A; Yaguchi S
    Dev Biol; 2018 Dec; 444(1):1-8. PubMed ID: 30266259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishment of pigment cell lineage in embryos of the sea urchin, Hemicentrotus pulcherrimus.
    Kominami T
    Dev Growth Differ; 2000 Feb; 42(1):41-51. PubMed ID: 10831042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of cell contact in the specification process of pigment founder cells in the sea urchin embryo.
    Takata H; Kominami T; Masui M
    Zoolog Sci; 2002 Mar; 19(3):299-307. PubMed ID: 12125928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of Cyclophilin during the Embryonic Development of the Sea Urchin.
    Ohta K; Nakazawa T
    Zoolog Sci; 1998 Aug; 15(4):547-52. PubMed ID: 18462035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Aminopterin and Deoxyribonucleosides on the Cleavage and Embryogenesis of the Sea Urchin, Hemicentrotus pulcherrimus: (aminopterin/thymidine/5-bromo-2'-deoxyuridine/cell division/sea urchin development).
    Niikura K; Fujiwara A; Yasumasu I
    Dev Growth Differ; 1984; 26(5):451-463. PubMed ID: 37280794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavior and differentiation process of pigment cells in a tropical sea urchin Echinometra mathaei.
    Takata H; Kominami T
    Dev Growth Differ; 2003; 45(5-6):473-83. PubMed ID: 14706072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.