These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28305354)

  • 1. Electron microscope visualization of giant polysomes in sea urchin embryos.
    Whiteley AH; Mizuno S
    Wilehm Roux Arch Dev Biol; 1981 Mar; 190(2):73-82. PubMed ID: 28305354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polysome structure in sea urchin eggs and embryos: an electron microscopic analysis.
    Martin KA; Miller OL
    Dev Biol; 1983 Aug; 98(2):338-48. PubMed ID: 6683685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 'Unmasking' of stored maternal mRNAs and the activation of protein synthesis at fertilization in sea urchins.
    Kelso-Winemiller LC; Winkler MM
    Development; 1991 Feb; 111(2):623-33. PubMed ID: 1893879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of translation systems in vitro from three developmental stages of Strongylocentrotus purpuratus.
    Lopo AC; Lashbrook CC; Hershey JW
    Biochem J; 1989 Mar; 258(2):553-61. PubMed ID: 2706000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron microscopic visualization of a discrete class of giant translation units in salivary gland cells of Chironomus tentans.
    Francke C; Edström JE; McDowall AW; Miller OL
    EMBO J; 1982; 1(1):59-62. PubMed ID: 16453408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of messenger ribonucleic acid in polysomes and nonpolysomal particles of sea urchin embryos: translational control of actin synthesis.
    Infante AA; Heilmann LJ
    Biochemistry; 1981 Jan; 20(1):1-8. PubMed ID: 6894096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separate ribosomal pools in sea urchin embryos: ammonia activates a movement between pools.
    Danilchik MV; Yablonka-Reuveni Z; Moon RT; Reed SK; Hille MB
    Biochemistry; 1986 Jun; 25(12):3696-702. PubMed ID: 3718954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translational control in early sea urchin embryogenesis: initiation factor eIF4F stimulates protein synthesis in lysates from unfertilized eggs of Strongylocentrotus purpuratus.
    Lopo AC; MacMillan S; Hershey JW
    Biochemistry; 1988 Jan; 27(1):351-7. PubMed ID: 3349037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytoplasmic nonpolysomal ribonucleoprotein particles in sea urchin embryos and their relationship to protein synthesis.
    Dworkin MB; Rudensey LM; Infante AA
    Proc Natl Acad Sci U S A; 1977 Jun; 74(6):2231-5. PubMed ID: 267921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association of 7 SL RNA and an SRP-like particle with polysomes and endoplasmic reticulum in the developing sea urchin embryo.
    LeBlanc JM; Infante AA
    Dev Biol; 1989 Mar; 132(1):139-52. PubMed ID: 2465192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. POLYSOMES OF THE SEA URCHIN EMBRYO: AN IMPROVED METHOD FOR EXTRACTION OF INTEGRATED POLYSOMES.
    Hirama M; Mano Y
    Dev Growth Differ; 1973 Dec; 15(4):269-283. PubMed ID: 37281254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polysomes are associated with microtubules in fertilized eggs of Chinese pine (Pinus tabulaeformis).
    Han Y; Yu J; Guo F; Watkins SC
    Protoplasma; 2006 May; 227(2-4):223-7. PubMed ID: 16736260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Vegetal Plate Cells Separated from Cytochalasin B-Treated Blastulae of the Sea Urchin, Clypeaster japonicus: (cytochalasin B/cell isolation/presumptive primary mesenchyme cell/vegetal plate cell/sea urchin).
    Katow H
    Dev Growth Differ; 1989 Oct; 31(5):439-446. PubMed ID: 37281824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression pattern of vascular endothelial growth factor 2 during sea urchin development.
    Kipryushina YO; Yakovlev KV; Kulakova MA; Odintsova NA
    Gene Expr Patterns; 2013 Dec; 13(8):402-6. PubMed ID: 23867171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribosome crystallization in chicken embryos. II. Conditions for the formation of ribosome tetramers in vitro.
    Morimoto T; Blobel G; Sabatini DD
    J Cell Biol; 1972 Feb; 52(2):355-66. PubMed ID: 5061950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple levels of regulation of protein synthesis at fertilization in sea urchin eggs.
    Winkler MM; Nelson EM; Lashbrook C; Hershey JW
    Dev Biol; 1985 Feb; 107(2):290-300. PubMed ID: 3972155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MORPHOGENETIC SUBSTANCES FOUND IN THE EMBRYOS OF SEA URCHIN, WITH SPECIAL REFERENCE TO THE ANTI-VEGETALIZING SUBSTANCE.
    Fujiwara A; Yasumasu I
    Dev Growth Differ; 1974; 16(2):93-104. PubMed ID: 37281286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gastrulation in the sea urchin, Strongylocentrotus purpuratus, is disrupted by the small laminin peptides YIGSR and IKVAV.
    Hawkins RL; Fan J; Hille MB
    Cell Adhes Commun; 1995 May; 3(2):163-77. PubMed ID: 7583008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental shifts in frequency distribution of polysomal mRNA and their posttranscriptional regulation in the sea urchin embryo.
    Shepherd GW; Nemer M
    Proc Natl Acad Sci U S A; 1980 Aug; 77(8):4653-6. PubMed ID: 6933514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translational regulation of histone synthesis in the sea urchin strongylocentrotus purpuratus.
    Herlands L; Allfrey VG; Poccia D
    J Cell Biol; 1982 Jul; 94(1):219-23. PubMed ID: 7119016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.