These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28305417)

  • 1. Changes in the distribution of melanophores and xanthophores inTriturus alpestris embryos during their transition from the uniform to banded pattern.
    Epperlein HH; Claviez M
    Wilehm Roux Arch Dev Biol; 1982 Jan; 191(1):5-18. PubMed ID: 28305417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different distribution of melanophores and xanthophores in early tailbud and larval stages inTriturus alpestris.
    Epperlein HH
    Wilehm Roux Arch Dev Biol; 1982 Jan; 191(1):19-27. PubMed ID: 28305418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The development of the larval pigment patterns in Triturus alpestris and Ambystoma mexicanum.
    Epperlein HH; Löfberg J
    Adv Anat Embryol Cell Biol; 1990; 118():1-99. PubMed ID: 2368640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pigment cell pattern formation in Taricha torosa: the role of the extracellular matrix in controlling pigment cell migration and differentiation.
    Tucker RP; Erickson CA
    Dev Biol; 1986 Nov; 118(1):268-85. PubMed ID: 3770303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of pigment cells during early amphibian development (Triturus alpestris, Ambystoma mexicanum).
    Epperlein HH; Ziegler I; Perris R
    Cell Tissue Res; 1988 Sep; 253(3):493-505. PubMed ID: 3141059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xanthophores in chromatophore groups of the premigratory neural crest initiate the pigment pattern of the axolotl larva.
    Epperlein HH; Löfberg J
    Wilehm Roux Arch Dev Biol; 1984 Nov; 193(6):357-369. PubMed ID: 28305101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The control of pigment cell pattern formation in the California newt, Taricha torosa.
    Tucker RP; Erickson CA
    J Embryol Exp Morphol; 1986 Sep; 97():141-68. PubMed ID: 3794598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. When neural crest and placodes collide: interactions between melanophores and the lateral lines that generate stripes in the salamander Ambystoma tigrinum tigrinum (Ambystomatidae).
    Parichy DM
    Dev Biol; 1996 May; 175(2):283-300. PubMed ID: 8626033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-CAM and N-cadherin are specifically expressed in xanthophores, but not in the other types of pigment cells, melanophores, and iridiphores.
    Fukuzawa T; Obika M
    Pigment Cell Res; 1995 Feb; 8(1):1-9. PubMed ID: 7792250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of pigment cell ultrastructure and organisation in the dermis of marble trout and brown trout, and first description of erythrophore ultrastructure in salmonids.
    Djurdjevič I; Kreft ME; Sušnik Bajec S
    J Anat; 2015 Nov; 227(5):583-95. PubMed ID: 26467239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local reorganization of xanthophores fine-tunes and colors the striped pattern of zebrafish.
    Mahalwar P; Walderich B; Singh AP; Nüsslein-Volhard C
    Science; 2014 Sep; 345(6202):1362-4. PubMed ID: 25214630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dermal and epidermal chromatophores of the Antarctic teleost Trematomus bernacchii.
    Obika M; Meyer-Rochow VB
    Pigment Cell Res; 1990; 3(1):33-7. PubMed ID: 2377579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructure of the dermal chromatophores in a lizard (Scincidae: Plestiodon latiscutatus) with conspicuous body and tail coloration.
    Kuriyama T; Miyaji K; Sugimoto M; Hasegawa M
    Zoolog Sci; 2006 Sep; 23(9):793-9. PubMed ID: 17043401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential expressions of melanocortin receptor subtypes in melanophores and xanthophores of barfin flounder.
    Kobayashi Y; Tsuchiya K; Yamanome T; Schiöth HB; Takahashi A
    Gen Comp Endocrinol; 2010 Aug; 168(1):133-42. PubMed ID: 20417636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterotypic interactions regulate cell shape and density during color pattern formation in zebrafish.
    Mahalwar P; Singh AP; Fadeev A; Nüsslein-Volhard C; Irion U
    Biol Open; 2016 Nov; 5(11):1680-1690. PubMed ID: 27742608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructural and biochemical analysis of epidermal xanthophores and dermal chromatophores of the teleost Sparus aurata.
    Ferrer C; Solano F; Zuasti A
    Histol Histopathol; 1999 Apr; 14(2):383-90. PubMed ID: 10212799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pigment pattern formation by contact-dependent depolarization.
    Inaba M; Yamanaka H; Kondo S
    Science; 2012 Feb; 335(6069):677. PubMed ID: 22323812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The minimal gap-junction network among melanophores and xanthophores required for stripe pattern formation in zebrafish.
    Usui Y; Aramaki T; Kondo S; Watanabe M
    Development; 2019 Nov; 146(22):. PubMed ID: 31666235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sdf1a patterns zebrafish melanophores and links the somite and melanophore pattern defects in choker mutants.
    Svetic V; Hollway GE; Elworthy S; Chipperfield TR; Davison C; Adams RJ; Eisen JS; Ingham PW; Currie PD; Kelsh RN
    Development; 2007 Mar; 134(5):1011-22. PubMed ID: 17267445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dynamic behavior of chromatophores marks the transition from bands to spots in leopard geckos.
    Ullate-Agote A; Tzika AC
    Proc Natl Acad Sci U S A; 2024 Jul; 121(29):e2400486121. PubMed ID: 38976731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.