These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 28305558)

  • 1. Cell proliferation in ectodermal explants from Xenopus embryos.
    Winklbauer R
    Rouxs Arch Dev Biol; 1988 May; 197(3):141-147. PubMed ID: 28305558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the ectoderm in Xenopus: tissue specification and the role of cell association and division.
    Jones EA; Woodland HR
    Cell; 1986 Jan; 44(2):345-55. PubMed ID: 3943127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell proliferation in the ectoderm of the Xenopus embryo: development of substratum requirements for cytokinesis.
    Winklbauer R
    Dev Biol; 1986 Nov; 118(1):70-81. PubMed ID: 3770308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular mechanism underlying neural convergent extension in Xenopus laevis embryos.
    Elul T; Koehl MA; Keller R
    Dev Biol; 1997 Nov; 191(2):243-58. PubMed ID: 9398438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytological and microspectrophotometric analysis of mesodermalized explants of Triturus gastrula ectoderm.
    Noda S; Kawakami I
    J Embryol Exp Morphol; 1976 Aug; 36(1):55-66. PubMed ID: 978130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro studies on the morphogenesis and differentiation of the mesoderm subjacent to the apical ectodermal ridge of the embryonic chick limb-bud.
    Kosher RA; Savage MP; Chan SC
    J Embryol Exp Morphol; 1979 Apr; 50():75-97. PubMed ID: 458363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Special Considerations for Making Explants and Transplants with
    Fisher M; Grainger RM
    Cold Spring Harb Protoc; 2019 Jun; 2019(6):. PubMed ID: 31010887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfilaments in the external surface layer of the early amphibian embryo.
    Perry MM
    J Embryol Exp Morphol; 1975 Feb; 33(1):127-46. PubMed ID: 50397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of neuronal differentiation by planar signals in Xenopus embryos.
    Sater AK; Steinhardt RA; Keller R
    Dev Dyn; 1993 Aug; 197(4):268-80. PubMed ID: 8292824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ventral cell rearrangements contribute to anterior-posterior axis lengthening between neurula and tailbud stages in Xenopus laevis.
    Larkin K; Danilchik MV
    Dev Biol; 1999 Dec; 216(2):550-60. PubMed ID: 10642792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xenopus laevis Keller Explants.
    Sive HL; Grainger RM; Harland RM
    CSH Protoc; 2007 Jun; 2007():pdb.prot4749. PubMed ID: 21357097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chambers for Culturing and Immobilizing
    Chu CW; Davidson LA
    Cold Spring Harb Protoc; 2022 Jun; 2022(5):Pdb.prot107649. PubMed ID: 34667121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Xenopus POU class V transcription factor XOct-25 inhibits ectodermal competence to respond to bone morphogenetic protein-mediated embryonic induction.
    Takebayashi-Suzuki K; Arita N; Murasaki E; Suzuki A
    Mech Dev; 2007; 124(11-12):840-55. PubMed ID: 17950579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cdc2-like kinase 2 (Clk2) promotes early neural development in Xenopus embryos.
    Virgirinia RP; Jahan N; Okada M; Takebayashi-Suzuki K; Yoshida H; Nakamura M; Akao H; Yoshimoto Y; Fatchiyah F; Ueno N; Suzuki A
    Dev Growth Differ; 2019 Aug; 61(6):365-377. PubMed ID: 31270814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-step induction of primitive erythrocytes in Xenopus laevis embryos: signals from the vegetal endoderm and the overlying ectoderm.
    Kikkawa M; Yamazaki M; Izutsu Y; Maéno M
    Int J Dev Biol; 2001 Apr; 45(2):387-96. PubMed ID: 11330858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell interactions and the control of gene activity during early development of Xenopus laevis.
    Sargent TD; Jamrich M; Dawid IB
    Dev Biol; 1986 Mar; 114(1):238-46. PubMed ID: 3956863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epithelial cell division in the Xenopus laevis embryo during gastrulation.
    Hatte G; Tramier M; Prigent C; Tassan JP
    Int J Dev Biol; 2014; 58(10-12):775-81. PubMed ID: 26154319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesoderm induction in Xenopus laevis: a quantitative study using a cell lineage label and tissue-specific antibodies.
    Dale L; Smith JC; Slack JM
    J Embryol Exp Morphol; 1985 Oct; 89():289-312. PubMed ID: 3912458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of cardiomyocytes by GATA4 in Xenopus ectodermal explants.
    Latinkić BV; Kotecha S; Mohun TJ
    Development; 2003 Aug; 130(16):3865-76. PubMed ID: 12835401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The kinase SGK1 in the endoderm and mesoderm promotes ectodermal survival by down-regulating components of the death-inducing signaling complex.
    Endo T; Kusakabe M; Sunadome K; Yamamoto T; Nishida E
    Sci Signal; 2011 Jan; 4(156):ra2. PubMed ID: 21245468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.