These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28305802)

  • 21. Dye-coupling and the formation and fate of the hypoblast in the teleost fish embryo, Barbus conchonius.
    Gevers P; Timmermans LP
    Development; 1991 Jun; 112(2):431-8. PubMed ID: 1794313
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms underlying the organizer formation in Bufo arenarum embryos.
    Manes ME; Nieto OL
    Microsc Electron Biol Celular; 1989 Jun; 13(1):73-83. PubMed ID: 2517692
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The primary role of zebrafish
    Gagnon JA; Obbad K; Schier AF
    Development; 2018 Jan; 145(1):. PubMed ID: 29180571
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of convergent yolk syncytial layer nuclear movement in zebrafish.
    Carvalho L; Stühmer J; Bois JS; Kalaidzidis Y; Lecaudey V; Heisenberg CP
    Development; 2009 Apr; 136(8):1305-15. PubMed ID: 19279138
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The tight junction component Claudin E is required for zebrafish epiboly.
    Siddiqui M; Sheikh H; Tran C; Bruce AE
    Dev Dyn; 2010 Feb; 239(2):715-22. PubMed ID: 20014098
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell lineage of zebrafish blastomeres. II. Formation of the yolk syncytial layer.
    Kimmel CB; Law RD
    Dev Biol; 1985 Mar; 108(1):86-93. PubMed ID: 3972183
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ApoA-II directs morphogenetic movements of zebrafish embryo by preventing chromosome fusion during nuclear division in yolk syncytial layer.
    Zhang T; Yao S; Wang P; Yin C; Xiao C; Qian M; Liu D; Zheng L; Meng W; Zhu H; Liu J; Xu H; Mo X
    J Biol Chem; 2011 Mar; 286(11):9514-25. PubMed ID: 21212265
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial-temporal characteristics of intercellular junctions in early zebrafish and loach embryos before and during gastrulation.
    Bozhkova V; Voronov D
    Dev Genes Evol; 1997 Jul; 207(2):115-126. PubMed ID: 27747404
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mtx2 directs zebrafish morphogenetic movements during epiboly by regulating microfilament formation.
    Wilkins SJ; Yoong S; Verkade H; Mizoguchi T; Plowman SJ; Hancock JF; Kikuchi Y; Heath JK; Perkins AC
    Dev Biol; 2008 Feb; 314(1):12-22. PubMed ID: 18154948
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exogenous tenascin inhibits mesodermal cell migration during amphibian gastrulation.
    Riou JF; Shi DL; Chiquet M; Boucaut JC
    Dev Biol; 1990 Feb; 137(2):305-17. PubMed ID: 1689260
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immunohistochemical and ultrastructural characterization of the initial post-hatching development of bovine embryos.
    Maddox-Hyttel P; Alexopoulos NI; Vajta G; Lewis I; Rogers P; Cann L; Callesen H; Tveden-Nyborg P; Trounson A
    Reproduction; 2003 Apr; 125(4):607-23. PubMed ID: 12683931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pattern formation in janus-mutant zebrafish embryos.
    Abdelilah S; Driever W
    Dev Biol; 1997 Apr; 184(1):70-84. PubMed ID: 9142985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell behavior during early development in the South American annual fishes of the genus Cynolebias.
    Carter CA; Wourms JP
    J Morphol; 1991 Dec; 210(3):247-66. PubMed ID: 1791627
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Protein synthesis in loach embryos isolated from the yolk and cultivated in vitro].
    Krigsgaber MR; Kostomarova AA; Burakova TA
    Ontogenez; 1975; 6(5):466-74. PubMed ID: 1052338
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Blastomeres and cells with mesendodermal fates of carp embryos express cth1, a member of the TIS11 family of primary response genes.
    Stevens CJ; Schipper H; Samallo J; Stroband HW; te Kronnie T
    Int J Dev Biol; 1998 Mar; 42(2):181-8. PubMed ID: 9551863
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rearranging gastrulation in the name of yolk: evolution of gastrulation in yolk-rich amniote eggs.
    Arendt D; Nübler-Jung K
    Mech Dev; 1999 Mar; 81(1-2):3-22. PubMed ID: 10330481
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Muscle specification in the Xenopus laevis gastrula-stage embryo.
    Wunderlich K; Gustin JK; Domingo CR
    Dev Dyn; 2005 Aug; 233(4):1348-58. PubMed ID: 15965978
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rearrangement of enveloping layer cells without disruption of the epithelial permeability barrier as a factor in Fundulus epiboly.
    Keller RE; Trinkaus JP
    Dev Biol; 1987 Mar; 120(1):12-24. PubMed ID: 3817284
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Normal fates and states of specification of different regions in the axolotl gastrula.
    Cleine JH; Slack JM
    J Embryol Exp Morphol; 1985 Apr; 86():247-69. PubMed ID: 2411838
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct evidence of an essential role for extended involution in the specification of a dorsal marginal mesoderm during Cynops gastrulation.
    Suzuki AS; Yamamoto Y; Imoh H
    Dev Growth Differ; 1997 Apr; 39(2):135-41. PubMed ID: 9108327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.