BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28305807)

  • 1. Progressive determination of cell fates along the dorsoventral axis in the sea urchin Heliocidaris erythrogramma.
    Henry JJ; Raff RA
    Rouxs Arch Dev Biol; 1994 Oct; 204(1):62-69. PubMed ID: 28305807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary change in the process of dorsoventral axis determination in the direct developing sea urchin, Heliocidaris erythrogramma.
    Henry JJ; Raff RA
    Dev Biol; 1990 Sep; 141(1):55-69. PubMed ID: 2391006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary modification of cell lineage in the direct-developing sea urchin Heliocidaris erythrogramma.
    Wray GA; Raff RA
    Dev Biol; 1989 Apr; 132(2):458-70. PubMed ID: 2924998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dorsoventral axis is specified prior to first cleavage in the direct developing sea urchin Heliocidaris erythrogramma.
    Henry JJ; Wray GA; Raff RA
    Development; 1990 Nov; 110(3):875-84. PubMed ID: 2088726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary dissociation between cleavage, cell lineage and embryonic axes in sea urchin embryos.
    Henry JJ; Klueg KM; Raff RA
    Development; 1992 Apr; 114(4):931-8. PubMed ID: 1618154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel origins of lineage founder cells in the direct-developing sea urchin Heliocidaris erythrogramma.
    Wray GA; Raff RA
    Dev Biol; 1990 Sep; 141(1):41-54. PubMed ID: 2391005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-option of an oral-aboral patterning mechanism to control left-right differentiation: the direct-developing sea urchin Heliocidaris erythrogramma is sinistralized, not ventralized, by NiCl2.
    Minsuk SB; Raff RA
    Evol Dev; 2005; 7(4):289-300. PubMed ID: 15982366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nodal expression and heterochrony in the evolution of dorsal-ventral and left-right axes formation in the direct-developing sea urchin Heliocidaris erythrogramma.
    Smith MS; Turner FR; Raff RA
    J Exp Zool B Mol Dev Evol; 2008 Dec; 310(8):609-22. PubMed ID: 18702078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The organizing role of the D quadrant as revealed through the phenomenon of twinning in the polycheate Chætopterus variopedatus.
    Henry JJ; Martindale MQ
    Rouxs Arch Dev Biol; 1987 Dec; 196(8):499-510. PubMed ID: 28305707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RAPID EVOLUTION OF GASTRULATION MECHANISMS IN A SEA URCHIN WITH LECITHOTROPHIC LARVAE.
    Wray GA; Raff RA
    Evolution; 1991 Dec; 45(8):1741-1750. PubMed ID: 28563964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of dorso-ventral axis in early embryos of the sea urchin, Hemicentrotus pulcherrimus.
    Kominami T
    Dev Biol; 1988 May; 127(1):187-96. PubMed ID: 3360211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of three mRNAs enriched in embryos of the direct-developing sea urchin Heliocidaris erythrogramma: evolution of larval ectoderm.
    Haag ES; Raff RA
    Dev Genes Evol; 1998 Jun; 208(4):188-204. PubMed ID: 9634485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lineage tracing shows that cell size asymmetries predict the dorsoventral axis in the sea star embryo.
    Barone V; Byrne M; Lyons DC
    BMC Biol; 2022 Aug; 20(1):179. PubMed ID: 35971116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-cell interactions determine the dorsoventral axis in embryos of an equally cleaving opisthobranch mollusc.
    Boring L
    Dev Biol; 1989 Nov; 136(1):239-53. PubMed ID: 2806721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of OTP-independent larval skeleton patterning in the direct-developing sea urchin, Heliocidaris erythrogramma.
    Zhou N; Wilson KA; Andrews ME; Kauffman JS; Raff RA
    J Exp Zool B Mol Dev Evol; 2003 Dec; 300(1):58-71. PubMed ID: 14984035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary Conservation of the Larval Serotonergic Nervous System in a Direct Developing Sea Urchin: (sea urchin development/larval nervous systems/heterochrony/direct development/Heliocidaris erythrogramma).
    Bisgrove BW; Raff RA
    Dev Growth Differ; 1989 Aug; 31(4):363-370. PubMed ID: 37281459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deuterostome evolution: early development in the enteropneust hemichordate, Ptychodera flava.
    Henry JQ; Tagawa K; Martindale MQ
    Evol Dev; 2001; 3(6):375-90. PubMed ID: 11806633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lineage and fate of each blastomere of the eight-cell sea urchin embryo.
    Cameron RA; Hough-Evans BR; Britten RJ; Davidson EH
    Genes Dev; 1987 Mar; 1(1):75-85. PubMed ID: 2448185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of an Alternate Type of Echinoderm Blastula Formation: The Wrinkled Blastula of the Sea Urchin Heliocidaris erythrogramma: (direct development/echinoderm development/morphogenesis/sea urchin embryos/wrinkled blastula).
    Henry JJ; Wray GA; Raff RA
    Dev Growth Differ; 1991 Aug; 33(4):317-328. PubMed ID: 37281034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of evolutionary changes in timing, spatial expression, and mRNA processing in the msp130 gene in a direct-developing sea urchin, Heliocidaris erythrogramma.
    Klueg KM; Harkey MA; Raff RA
    Dev Biol; 1997 Feb; 182(1):121-33. PubMed ID: 9028919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.