These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 28306221)

  • 1. Construction of Small-Diameter Vascular Graft by Shape-Memory and Self-Rolling Bacterial Cellulose Membrane.
    Li Y; Jiang K; Feng J; Liu J; Huang R; Chen Z; Yang J; Dai Z; Chen Y; Wang N; Zhang W; Zheng W; Yang G; Jiang X
    Adv Healthc Mater; 2017 Jun; 6(11):. PubMed ID: 28306221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept?
    Scherner M; Reutter S; Klemm D; Sterner-Kock A; Guschlbauer M; Richter T; Langebartels G; Madershahian N; Wahlers T; Wippermann J
    J Surg Res; 2014 Jun; 189(2):340-7. PubMed ID: 24726059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation on artificial blood vessels prepared from bacterial cellulose.
    Zang S; Zhang R; Chen H; Lu Y; Zhou J; Chang X; Qiu G; Wu Z; Yang G
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():111-7. PubMed ID: 25491966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Small-Caliber Bacterial Cellulose Vascular Prosthesis: Production, Characterization, and Preliminary In Vivo Testing.
    Leitão AF; Faria MA; Faustino AM; Moreira R; Mela P; Loureiro L; Silva I; Gama M
    Macromol Biosci; 2016 Jan; 16(1):139-50. PubMed ID: 26388180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial cellulose as a potential vascular graft: Mechanical characterization and constitutive model development.
    Zahedmanesh H; Mackle JN; Sellborn A; Drotz K; Bodin A; Gatenholm P; Lally C
    J Biomed Mater Res B Appl Biomater; 2011 Apr; 97(1):105-13. PubMed ID: 21290588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of bacterial cellulose and interactions with smooth muscle cells.
    Bäckdahl H; Helenius G; Bodin A; Nannmark U; Johansson BR; Risberg B; Gatenholm P
    Biomaterials; 2006 Mar; 27(9):2141-9. PubMed ID: 16310848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small calibre biosynthetic bacterial cellulose blood vessels: 13-months patency in a sheep model.
    Malm CJ; Risberg B; Bodin A; Bäckdahl H; Johansson BR; Gatenholm P; Jeppsson A
    Scand Cardiovasc J; 2012 Feb; 46(1):57-62. PubMed ID: 22029845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial cellulose modified with xyloglucan bearing the adhesion peptide RGD promotes endothelial cell adhesion and metabolism--a promising modification for vascular grafts.
    Fink H; Ahrenstedt L; Bodin A; Brumer H; Gatenholm P; Krettek A; Risberg B
    J Tissue Eng Regen Med; 2011 Jun; 5(6):454-63. PubMed ID: 21604383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preliminary results of small arterial substitute performed with a new cylindrical biomaterial composed of bacterial cellulose.
    Wippermann J; Schumann D; Klemm D; Kosmehl H; Salehi-Gelani S; Wahlers T
    Eur J Vasc Endovasc Surg; 2009 May; 37(5):592-6. PubMed ID: 19231251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing biocompatibility of some cation selective electrodes using heparin modified bacterial cellulose.
    Badr IH; Abdel-Sattar R; Keshk SM
    Carbohydr Polym; 2015 Dec; 134():687-94. PubMed ID: 26428173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound healing.
    Qiu Y; Qiu L; Cui J; Wei Q
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():303-309. PubMed ID: 26652377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial cellulose: long-term biocompatibility studies.
    Pértile RA; Moreira S; Gil da Costa RM; Correia A; Guãrdao L; Gartner F; Vilanova M; Gama M
    J Biomater Sci Polym Ed; 2012; 23(10):1339-54. PubMed ID: 21722421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wet and Dry Forms of Bacterial Cellulose Synthetized by Different Strains of Gluconacetobacter xylinus as Carriers for Yeast Immobilization.
    Żywicka A; Peitler D; Rakoczy R; Junka AF; Fijałkowski K
    Appl Biochem Biotechnol; 2016 Oct; 180(4):805-816. PubMed ID: 27188971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of Hollow Bacterial Cellulose Microspheres Using Microfluidics to Form an Injectable Porous Scaffold for Wound Healing.
    Yu J; Huang TR; Lim ZH; Luo R; Pasula RR; Liao LD; Lim S; Chen CH
    Adv Healthc Mater; 2016 Dec; 5(23):2983-2992. PubMed ID: 27805793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physicochemical Properties and In Vitro Biocompatibility of Three Bacterial Nanocellulose Conduits for Blood Vessel Applications.
    Bao L; Tang J; Hong FF; Lu X; Chen L
    Carbohydr Polym; 2020 Jul; 239():116246. PubMed ID: 32414454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Strategy for Rapid Construction of Blood Vessel-Like Structures with Complex Cell Alignments.
    Wang N; Peng Y; Zheng W; Tang L; Cheng S; Yang J; Liu S; Zhang W; Jiang X
    Macromol Biosci; 2018 May; 18(5):e1700408. PubMed ID: 29665286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-linked bacterial cellulose networks using glyoxalization.
    Quero F; Nogi M; Lee KY; Vanden Poel G; Bismarck A; Mantalaris A; Yano H; Eichhorn SJ
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):490-9. PubMed ID: 21186815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implantation of air-dried bacterial nanocellulose conduits in a small-caliber vascular prosthesis rabbit model.
    Bao L; Hong FF; Li G; Hu G; Chen L
    Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111922. PubMed ID: 33641915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production.
    Zhong C; Zhang GC; Liu M; Zheng XT; Han PP; Jia SR
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6189-99. PubMed ID: 23640364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Cell Viability and Biocompatibility of Bacterial Cellulose through in Situ Carboxymethylation.
    Zhou D; Sun Y; Bao Z; Liu W; Xian M; Nian R; Xu F
    Macromol Biosci; 2019 May; 19(5):e1800395. PubMed ID: 30721574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.