BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 28306259)

  • 1. Building a More Predictive Protein Force Field: A Systematic and Reproducible Route to AMBER-FB15.
    Wang LP; McKiernan KA; Gomes J; Beauchamp KA; Head-Gordon T; Rice JE; Swope WC; Martínez TJ; Pande VS
    J Phys Chem B; 2017 Apr; 121(16):4023-4039. PubMed ID: 28306259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and Validation of AMBER-FB15-Compatible Force Field Parameters for Phosphorylated Amino Acids.
    Stoppelman JP; Ng TT; Nerenberg PS; Wang LP
    J Phys Chem B; 2021 Nov; 125(43):11927-11942. PubMed ID: 34668708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational Preferences of an Intrinsically Disordered Protein Domain: A Case Study for Modern Force Fields.
    Gopal SM; Wingbermühle S; Schnatwinkel J; Juber S; Herrmann C; Schäfer LV
    J Phys Chem B; 2021 Jan; 125(1):24-35. PubMed ID: 33382616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved side-chain torsion potentials for the Amber ff99SB protein force field.
    Lindorff-Larsen K; Piana S; Palmo K; Maragakis P; Klepeis JL; Dror RO; Shaw DE
    Proteins; 2010 Jun; 78(8):1950-8. PubMed ID: 20408171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein simulations with an optimized water model: cooperative helix formation and temperature-induced unfolded state collapse.
    Best RB; Mittal J
    J Phys Chem B; 2010 Nov; 114(46):14916-23. PubMed ID: 21038907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force Field Benchmark of Amino Acids: I. Hydration and Diffusion in Different Water Models.
    Zhang H; Yin C; Jiang Y; van der Spoel D
    J Chem Inf Model; 2018 May; 58(5):1037-1052. PubMed ID: 29648448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomolecular force fields: where have we been, where are we now, where do we need to go and how do we get there?
    Dauber-Osguthorpe P; Hagler AT
    J Comput Aided Mol Des; 2019 Feb; 33(2):133-203. PubMed ID: 30506158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution.
    Tian C; Kasavajhala K; Belfon KAA; Raguette L; Huang H; Migues AN; Bickel J; Wang Y; Pincay J; Wu Q; Simmerling C
    J Chem Theory Comput; 2020 Jan; 16(1):528-552. PubMed ID: 31714766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Building Force Fields: An Automatic, Systematic, and Reproducible Approach.
    Wang LP; Martinez TJ; Pande VS
    J Phys Chem Lett; 2014 Jun; 5(11):1885-91. PubMed ID: 26273869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force Field Benchmark of Amino Acids. 2. Partition Coefficients between Water and Organic Solvents.
    Zhang H; Jiang Y; Cui Z; Yin C
    J Chem Inf Model; 2018 Aug; 58(8):1669-1681. PubMed ID: 30047730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic properties for applications in chemical industry via classical force fields.
    Guevara-Carrion G; Hasse H; Vrabec J
    Top Curr Chem; 2012; 307():201-49. PubMed ID: 21678137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Explicit polarization: a quantum mechanical framework for developing next generation force fields.
    Gao J; Truhlar DG; Wang Y; Mazack MJ; Löffler P; Provorse MR; Rehak P
    Acc Chem Res; 2014 Sep; 47(9):2837-45. PubMed ID: 25098651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating nonpolarizable nucleic acid force fields: a systematic comparison of the nucleobases hydration free energies and chloroform-to-water partition coefficients.
    Wolf MG; Groenhof G
    J Comput Chem; 2012 Oct; 33(28):2225-32. PubMed ID: 22782700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations.
    Duan Y; Wu C; Chowdhury S; Lee MC; Xiong G; Zhang W; Yang R; Cieplak P; Luo R; Lee T; Caldwell J; Wang J; Kollman P
    J Comput Chem; 2003 Dec; 24(16):1999-2012. PubMed ID: 14531054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parameterization and Application of the General Amber Force Field to Model Fluoro Substituted Furanose Moieties and Nucleosides.
    Escalante DE; Aldrich CC; Ferguson DM
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35565967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New generation of docking programs: Supercomputer validation of force fields and quantum-chemical methods for docking.
    Sulimov AV; Kutov DC; Katkova EV; Ilin IS; Sulimov VB
    J Mol Graph Model; 2017 Nov; 78():139-147. PubMed ID: 29055806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hydration structure of methylthiolate from QM/MM molecular dynamics.
    Awoonor-Williams E; Rowley CN
    J Chem Phys; 2018 Jul; 149(4):045103. PubMed ID: 30068187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding Thermodynamics and Interaction Patterns of Inhibitor-Major Urinary Protein-I Binding from Extensive Free-Energy Calculations: Benchmarking AMBER Force Fields.
    Huai Z; Shen Z; Sun Z
    J Chem Inf Model; 2021 Jan; 61(1):284-297. PubMed ID: 33307679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of a QM/MM force field and molecular mechanics force fields in simulations of alanine and glycine "dipeptides" (Ace-Ala-Nme and Ace-Gly-Nme) in water in relation to the problem of modeling the unfolded peptide backbone in solution.
    Hu H; Elstner M; Hermans J
    Proteins; 2003 Feb; 50(3):451-63. PubMed ID: 12557187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of multiple Amber force fields and development of improved protein backbone parameters.
    Hornak V; Abel R; Okur A; Strockbine B; Roitberg A; Simmerling C
    Proteins; 2006 Nov; 65(3):712-25. PubMed ID: 16981200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.