BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 28306552)

  • 1. Precise determination of the heat delivery during in vivo magnetic nanoparticle hyperthermia with infrared thermography.
    Rodrigues HF; Capistrano G; Mello FM; Zufelato N; Silveira-Lacerda E; Bakuzis AF
    Phys Med Biol; 2017 May; 62(10):4062-4082. PubMed ID: 28306552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation the tumor temperature in magnetic nanoparticle hyperthermia by infrared thermography: Phantom and numerical studies.
    Ma M; Zhang Y; Gu N
    J Therm Biol; 2018 Aug; 76():89-94. PubMed ID: 30143303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy.
    Shaterabadi Z; Nabiyouni G; Soleymani M
    Prog Biophys Mol Biol; 2018 Mar; 133():9-19. PubMed ID: 28993133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noninvasive intratumoral thermal dose determination during
    Capistrano G; Rodrigues HF; Zufelato N; Gonçalves C; Cardoso CG; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2020 Dec; 37(3):120-140. PubMed ID: 33426991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia.
    Makridis A; Chatzitheodorou I; Topouridou K; Yavropoulou MP; Angelakeris M; Dendrinou-Samara C
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():663-70. PubMed ID: 27040263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive Model for Delivery Efficiency: Erythrocyte Membrane-Camouflaged Magnetofluorescent Nanocarriers Study.
    Sousa-Junior AA; Mendanha SA; Carrião MS; Capistrano G; Próspero AG; Soares GA; Cintra ER; Santos SFO; Zufelato N; Alonso A; Lima EM; Miranda JRA; Silveira-Lacerda EP; Cardoso CG; Bakuzis AF
    Mol Pharm; 2020 Mar; 17(3):837-851. PubMed ID: 31977228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurements of nanoparticle-enhanced heating from 1MHz ultrasound in solution and in mice bearing CT26 colon tumors.
    Beik J; Abed Z; Ghadimi-Daresajini A; Nourbakhsh M; Shakeri-Zadeh A; Ghasemi MS; Shiran MB
    J Therm Biol; 2016 Dec; 62(Pt A):84-89. PubMed ID: 27839555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia.
    Wang C; Hsu CH; Li Z; Hwang LP; Lin YC; Chou PT; Lin YY
    Int J Nanomedicine; 2017; 12():6273-6287. PubMed ID: 28894366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Ferromagnetic Fe0.6 Mn0.4 O Nanoflowers as a New Class of Magnetic Theranostic Platform for In Vivo T1 -T2 Dual-Mode Magnetic Resonance Imaging and Magnetic Hyperthermia Therapy.
    Liu XL; Ng CT; Chandrasekharan P; Yang HT; Zhao LY; Peng E; Lv YB; Xiao W; Fang J; Yi JB; Zhang H; Chuang KH; Bay BH; Ding J; Fan HM
    Adv Healthc Mater; 2016 Aug; 5(16):2092-104. PubMed ID: 27297640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using thermal energy produced by irradiation of Mn-Zn ferrite magnetic nanoparticles (MZF-NPs) for heat-inducible gene expression.
    Tang QS; Zhang DS; Cong XM; Wan ML; Jin LQ
    Biomaterials; 2008 Jun; 29(17):2673-9. PubMed ID: 18396332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery.
    Kossatz S; Grandke J; Couleaud P; Latorre A; Aires A; Crosbie-Staunton K; Ludwig R; Dähring H; Ettelt V; Lazaro-Carrillo A; Calero M; Sader M; Courty J; Volkov Y; Prina-Mello A; Villanueva A; Somoza Á; Cortajarena AL; Miranda R; Hilger I
    Breast Cancer Res; 2015 May; 17(1):66. PubMed ID: 25968050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel nanoparticles with Cr
    Zhang W; Zuo X; Niu Y; Wu C; Wang S; Guan S; Silva SRP
    Nanoscale; 2017 Sep; 9(37):13929-13937. PubMed ID: 28726937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel strategy combining magnetic particle hyperthermia pulses with enhanced performance binary ferrite carriers for effective in vitro manipulation of primary human osteogenic sarcoma cells.
    Makridis A; Tziomaki M; Topouridou K; Yavropoulou MP; Yovos JG; Kalogirou O; Samaras T; Angelakeris M
    Int J Hyperthermia; 2016 Nov; 32(7):778-85. PubMed ID: 27442884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanohyperthermia of malignant tumors. II. In vivo tumor heating with manganese perovskite nanoparticles.
    Bubnovskaya L; Belous A; Solopan A; Podoltsev A; Kondratenko I; Kovelskaya A; Sergienko T; Osinsky S
    Exp Oncol; 2012 Dec; 34(4):336-9. PubMed ID: 23302992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical study of temperature distribution in a spherical tissue in magnetic fluid hyperthermia using lattice Boltzmann method.
    Lahonian M; Golneshan AA
    IEEE Trans Nanobioscience; 2011 Dec; 10(4):262-8. PubMed ID: 22271797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of tumor properties on energy absorption, temperature mapping, and thermal dose in 13.56-MHz radiofrequency hyperthermia.
    Prasad B; Kim S; Cho W; Kim S; Kim JK
    J Therm Biol; 2018 May; 74():281-289. PubMed ID: 29801639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interleaved Mapping of Temperature and Longitudinal Relaxation Rate to Monitor Drug Delivery During Magnetic Resonance-Guided High-Intensity Focused Ultrasound-Induced Hyperthermia.
    Kneepkens E; Heijman E; Keupp J; Weiss S; Nicolay K; Grüll H
    Invest Radiol; 2017 Oct; 52(10):620-630. PubMed ID: 28598900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticles for cancer therapy using magnetic forces.
    Tietze R; Lyer S; Dürr S; Alexiou C
    Nanomedicine (Lond); 2012 Mar; 7(3):447-57. PubMed ID: 22385201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal ablation of tumors using magnetic nanoparticles: an in vivo feasibility study.
    Hilger I; Hiergeist R; Hergt R; Winnefeld K; Schubert H; Kaiser WA
    Invest Radiol; 2002 Oct; 37(10):580-6. PubMed ID: 12352168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.