These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28306844)

  • 41. Downstairs drivers--root herbivores shape communities of above-ground herbivores and natural enemies via changes in plant nutrients.
    Johnson SN; Mitchell C; McNicol JW; Thompson J; Karley AJ
    J Anim Ecol; 2013 Sep; 82(5):1021-30. PubMed ID: 23488539
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spatial and temporal patterns in herbivory on a Caribbean fringing reef: the effects on plant distribution.
    Hay ME; Colburn T; Downing D
    Oecologia; 1983 Jun; 58(3):299-308. PubMed ID: 28310326
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Epibiotic pressure contributes to biofouling invader success.
    Leonard K; Hewitt CL; Campbell ML; Primo C; Miller SD
    Sci Rep; 2017 Jul; 7(1):5173. PubMed ID: 28701736
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Effect of Host-Plant Phylogenetic Isolation on Species Richness, Composition and Specialization of Insect Herbivores: A Comparison between Native and Exotic Hosts.
    Grandez-Rios JM; Lima Bergamini L; Santos de Araújo W; Villalobos F; Almeida-Neto M
    PLoS One; 2015; 10(9):e0138031. PubMed ID: 26379159
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phylogenetic and geographic variation in host breadth and composition by herbivorous amphipods in the family Ampithoidae.
    Poore AG; Hill NA; Sotka EE
    Evolution; 2008 Jan; 62(1):21-38. PubMed ID: 18039329
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Host-Plant Specialization Mediates the Influence of Plant Abundance on Host Use by Flower Head-Feeding Insects.
    Nobre PA; Bergamini LL; Lewinsohn TM; Jorge LR; Almeida-Neto M
    Environ Entomol; 2016 Feb; 45(1):171-7. PubMed ID: 26637546
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spatial and temporal patterns in the occurrence of peritrich ciliates as epibionts on calanoid copepods in the Chesapeake Bay, USA.
    Utz LR; Coats DW
    J Eukaryot Microbiol; 2005; 52(3):236-44. PubMed ID: 15927000
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Experimental demography and the vital rates of generalist and specialist insect herbivores on native and novel host plants.
    García-Robledo C; Horvitz CC
    J Anim Ecol; 2011 Sep; 80(5):976-89. PubMed ID: 21534952
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Marine snake epibiosis: a review and first report of decapods associated with Pelamis platurus.
    Pfaller JB; Frick MG; Brischoux F; Sheehy CM; Lillywhite HB
    Integr Comp Biol; 2012 Aug; 52(2):296-310. PubMed ID: 22505588
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Epibiont assemblages on limpet shells: Biodiversity drivers in intertidal rocky shores.
    Pereira F; Piló D; Carvalho AN; Rufino M; Moura P; Vasconcelos P; Gaspar MB
    Mar Environ Res; 2022 Feb; 174():105556. PubMed ID: 35026724
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Parasitism overrides herbivore identity allowing hyperparasitoids to locate their parasitoid host using herbivore-induced plant volatiles.
    Zhu F; Broekgaarden C; Weldegergis BT; Harvey JA; Vosman B; Dicke M; Poelman EH
    Mol Ecol; 2015 Jun; 24(11):2886-99. PubMed ID: 25789566
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reduced herbivore resistance in introduced smooth cordgrass (Spartina alterniflora) after a century of herbivore-free growth.
    Daehler CC; Strong DR
    Oecologia; 1997 Mar; 110(1):99-108. PubMed ID: 28307474
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Epibiotic microorganisms on copepods and other marine crustaceans.
    Carman KR; Dobbs FC
    Microsc Res Tech; 1997 Apr; 37(2):116-35. PubMed ID: 9145394
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Seasonal inhibitory effects of marine plants on sea urchins: structuring communities the algal way.
    Konar B
    Oecologia; 2000 Oct; 125(2):208-217. PubMed ID: 24595832
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Informed herbivore movement and interplant communication determine the effects of induced resistance in an individual-based model.
    Rubin IN; Ellner SP; Kessler A; Morrell KA
    J Anim Ecol; 2015 Sep; 84(5):1273-85. PubMed ID: 25808814
    [TBL] [Abstract][Full Text] [Related]  

  • 56. No Effects and No Control of Epibionts in Two Species of Temperate Pycnogonids.
    Lane SJ; Shishido CM; Moran AL; Tobalske BW; Woods HA
    Biol Bull; 2016 Apr; 230(2):165-73. PubMed ID: 27132138
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Elephants in the understory: opposing direct and indirect effects of consumption and ecosystem engineering by megaherbivores.
    Coverdale TC; Kartzinel TR; Grabowski KL; Shriver RK; Hassan AA; Goheen JR; Palmer TM; Pringle RM
    Ecology; 2016 Nov; 97(11):3219-3230. PubMed ID: 27870025
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of tree species richness and composition on moose winter browsing damage and foraging selectivity: an experimental study.
    Milligan HT; Koricheva J
    J Anim Ecol; 2013 Jul; 82(4):739-48. PubMed ID: 23363076
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A conceptual framework for associational effects: when do neighbors matter and how would we know?
    Underwood N; Inouye BD; Hambäck PA
    Q Rev Biol; 2014 Mar; 89(1):1-19. PubMed ID: 24672901
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Local adaptation in adult feeding preference and juvenile performance in the generalist herbivore Idotea balthica.
    Bell TM; Sotka EE
    Oecologia; 2012 Oct; 170(2):383-93. PubMed ID: 22451011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.