These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 28307186)
1. Distributional success of the marine seaweedFucus vesiculosus L. in the brackish Baltic Sea correlates with osmotic capabilities of Baltic gametes. Serrão EA; Kautsky L; Brawley SH Oecologia; 1996 Mar; 107(1):1-12. PubMed ID: 28307186 [TBL] [Abstract][Full Text] [Related]
2. Reciprocal transplants support a plasticity-first scenario during colonisation of a large hyposaline basin by a marine macro alga. Johansson D; Pereyra RT; Rafajlović M; Johannesson K BMC Ecol; 2017 Apr; 17(1):14. PubMed ID: 28381278 [TBL] [Abstract][Full Text] [Related]
3. Adaptations of semen characteristics and sperm motility to harsh salinity: Extreme situations encountered by the euryhaline tilapia Sarotherodon melanotheron heudelotii (Dumeril, 1859). Legendre M; Alavi SM; Dzyuba B; Linhart O; Prokopchuk G; Cochet C; Dugué R; Cosson J Theriogenology; 2016 Sep; 86(5):1251-67. PubMed ID: 27260510 [TBL] [Abstract][Full Text] [Related]
4. FLUORESCENCE EMISSION SPECTRA OF MARINE AND BRACKISH-WATER ECOTYPES OF FUCUS VESICULOSUS AND FUCUS RADICANS (PHAEOPHYCEAE) REVEAL DIFFERENCES IN LIGHT-HARVESTING APPARATUS(1). Maria Gylle A; Rantamäki S; Ekelund NG; Tyystjärvi E J Phycol; 2011 Feb; 47(1):98-105. PubMed ID: 27021714 [TBL] [Abstract][Full Text] [Related]
5. Immunomodulating effects of environmentally realistic copper concentrations in Mytilus edulis adapted to naturally low salinities. Höher N; Regoli F; Dissanayake A; Nagel M; Kriews M; Köhler A; Broeg K Aquat Toxicol; 2013 Sep; 140-141():185-95. PubMed ID: 23811023 [TBL] [Abstract][Full Text] [Related]
6. The Effect of Salinity and Temperature on Spawning and Fertilization in the Zebra Mussel Dreissena polymorpha (Pallas) from North America. Fong PP; Kyozuka K; Duncan J; Rynkowski S; Mekasha D; Ram JL Biol Bull; 1995 Dec; 189(3):320-329. PubMed ID: 29244573 [TBL] [Abstract][Full Text] [Related]
7. Sex and flow: the consequences of fluid shear for sperm-egg interactions. Riffell JA; Zimmer RK J Exp Biol; 2007 Oct; 210(Pt 20):3644-60. PubMed ID: 17921166 [TBL] [Abstract][Full Text] [Related]
8. Osmotic and ionic haemolymph concentrations in the Baltic Sea amphipod Gammarus oceanicus in relation to water salinity. Normant M; Kubicka M; Lapucki T; Czarnowski W; Michalowska M Comp Biochem Physiol A Mol Integr Physiol; 2005 May; 141(1):94-9. PubMed ID: 15921939 [TBL] [Abstract][Full Text] [Related]
9. Sexual conflict and polyspermy under sperm-limited conditions: in situ evidence from field simulations with the free-spawning marine echinoid Evechinus chloroticus. Franke ES; Babcock RC; Styan CA Am Nat; 2002 Oct; 160(4):485-96. PubMed ID: 18707524 [TBL] [Abstract][Full Text] [Related]
10. FREQUENT CLONALITY IN FUCOIDS (FUCUS RADICANS AND FUCUS VESICULOSUS; FUCALES, PHAEOPHYCEAE) IN THE BALTIC SEA(1). Johannesson K; Johansson D; Larsson KH; Huenchuñir CJ; Perus J; Forslund H; Kautsky L; Pereyra RT J Phycol; 2011 Oct; 47(5):990-8. PubMed ID: 27020180 [TBL] [Abstract][Full Text] [Related]
11. Evidence of rapid adaptive trait change to local salinity in the sperm of an invasive fish. Green L; Havenhand JN; Kvarnemo C Evol Appl; 2020 Mar; 13(3):533-544. PubMed ID: 32431734 [TBL] [Abstract][Full Text] [Related]
12. Geographic variation in fitness-related traits of the bladderwrack Barboza FR; Kotta J; Weinberger F; Jormalainen V; Kraufvelin P; Molis M; Schubert H; Pavia H; Nylund GM; Kautsky L; Schagerström E; Rickert E; Saha M; Fredriksen S; Martin G; Torn K; Ruuskanen A; Wahl M Ecol Evol; 2019 Aug; 9(16):9225-9238. PubMed ID: 31463018 [TBL] [Abstract][Full Text] [Related]
13. Physiological responses to salinity changes of the isopod Idotea chelipes from the Baltic brackish waters. Lapucki T; Normant M Comp Biochem Physiol A Mol Integr Physiol; 2008 Mar; 149(3):299-305. PubMed ID: 18262452 [TBL] [Abstract][Full Text] [Related]
14. [On the colonization of brackish water by marine animals of different ecological origin]. Remmert H Oecologia; 1968 Nov; 1(4):296-303. PubMed ID: 28306899 [TBL] [Abstract][Full Text] [Related]
15. Effects of Salinity on Sperm Motility, Fertilization, and Development in the Pacific Herring, Clupea pallasi. Griffin FJ; Pillai MC; Vines CA; Kääriä J; Hibbard-Robbins T; Yanagimachi R; Cherr GN Biol Bull; 1998 Feb; 194(1):25-35. PubMed ID: 28574784 [TBL] [Abstract][Full Text] [Related]
16. Understanding the effects of low salinity on fertilization success and early development in the sand dollar Echinarachnius parma. Allen JD; Pechenik JA Biol Bull; 2010 Apr; 218(2):189-99. PubMed ID: 20413795 [TBL] [Abstract][Full Text] [Related]
18. Influence of osmolality and ions on the activation and characteristics of zebrafish sperm motility. Wilson-Leedy JG; Kanuga MK; Ingermann RL Theriogenology; 2009 Apr; 71(7):1054-62. PubMed ID: 19185341 [TBL] [Abstract][Full Text] [Related]
19. Diversity and abundance of "Pelagibacterales" (SAR11) in the Baltic Sea salinity gradient. Herlemann DP; Woelk J; Labrenz M; Jürgens K Syst Appl Microbiol; 2014 Dec; 37(8):601-4. PubMed ID: 25444644 [TBL] [Abstract][Full Text] [Related]
20. Sea urchin fertilization assay: an evaluation of assumptions related to sample salinity adjustment and use of natural and synthetic marine waters for testing. Jonczyk E; Gilron G; Zajdlik B Environ Toxicol Chem; 2001 Apr; 20(4):804-9. PubMed ID: 11345457 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]