These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
421 related articles for article (PubMed ID: 28307285)
21. Nitrogen uptake, distribution, turnover, and efficiency of use in a CO2-enriched sweetgum forest. Norby RJ; Iversen CM Ecology; 2006 Jan; 87(1):5-14. PubMed ID: 16634292 [TBL] [Abstract][Full Text] [Related]
22. Canopy leaf area constrains [CO2]-induced enhancement of productivity and partitioning among aboveground carbon pools. McCarthy HR; Oren R; Finzi AC; Johnsen KH Proc Natl Acad Sci U S A; 2006 Dec; 103(51):19356-61. PubMed ID: 17159159 [TBL] [Abstract][Full Text] [Related]
23. Disentangling the effects of acidic air pollution, atmospheric CO Mathias JM; Thomas RB Glob Chang Biol; 2018 Sep; 24(9):3938-3953. PubMed ID: 29781219 [TBL] [Abstract][Full Text] [Related]
24. [Effects of elevated CO2 concentration and nitrogen deposition on the biomass accumulation and allocation in south subtropical main native tree species and their mixed communities]. Zhao L; Zhou GY; Zhang DQ; Duan HL; Liu JX Ying Yong Sheng Tai Xue Bao; 2011 Aug; 22(8):1949-54. PubMed ID: 22097352 [TBL] [Abstract][Full Text] [Related]
25. Growth enhancement of Picea abies trees under long-term, low-dose N addition is due to morphological more than to physiological changes. Krause K; Cherubini P; Bugmann H; Schleppi P Tree Physiol; 2012 Dec; 32(12):1471-81. PubMed ID: 23135740 [TBL] [Abstract][Full Text] [Related]
26. Consequences of elevated CO2, augmented nitrogen-deposition and soil type on the soluble nitrogen and sulphur in the phloem of beech (Fagus sylvatica) and spruce (Picea abies) in a competitive situation. Schraml C; Herschbach C; Eiblmeier M; Rennenberg H Physiol Plant; 2002 Jun; 115(2):258-266. PubMed ID: 12060244 [TBL] [Abstract][Full Text] [Related]
27. Nitrogen-addition effects on leaf traits and photosynthetic carbon gain of boreal forest understory shrubs. Palmroth S; Bach LH; Nordin A; Palmqvist K Oecologia; 2014 Jun; 175(2):457-70. PubMed ID: 24705693 [TBL] [Abstract][Full Text] [Related]
28. Competition modifies effects of enhanced ozone/carbon dioxide concentrations on carbohydrate and biomass accumulation in juvenile Norway spruce and European beech. Liu X; Kozovits AR; Grams TE; Blaschke H; Rennenberg H; Matyssek R Tree Physiol; 2004 Sep; 24(9):1045-55. PubMed ID: 15234902 [TBL] [Abstract][Full Text] [Related]
29. Leaf quality and insect herbivory in model tropical plant communities after long-term exposure to elevated atmospheric CO Arnone JA; Zaller JG; Körner C; Ziegler C; Zandt H Oecologia; 1995 Sep; 104(1):72-78. PubMed ID: 28306915 [TBL] [Abstract][Full Text] [Related]
30. Influence of stand structure on carbon-13 of vegetation, soils, and canopy air within deciduous and evergreen forests in Utah, United States. Buchmann N; Kao WY; Ehleringer J Oecologia; 1997 Mar; 110(1):109-119. PubMed ID: 28307459 [TBL] [Abstract][Full Text] [Related]
31. Responses of communities of tropical tree species to elevated CO Lovelock CE; Winter K; Mersits R; Popp M Oecologia; 1998 Aug; 116(1-2):207-218. PubMed ID: 28308528 [TBL] [Abstract][Full Text] [Related]
32. Performance of two Picea abies (L.) Karst. stands at different stages of decline : VII. Nutrient relations and growth. Oren R; Schulze ED; Werk KS; Meyer J Oecologia; 1988 Nov; 77(2):163-173. PubMed ID: 28310368 [TBL] [Abstract][Full Text] [Related]
33. Carbon budget of Pinus sylvestris saplings after four years of exposure to elevated atmospheric carbon dioxide concentration. Janssens IA; Medlyn B; Gielen B; Laureysens I; Jach ME; Van Hove D; Ceulemans R Tree Physiol; 2005 Mar; 25(3):325-37. PubMed ID: 15631981 [TBL] [Abstract][Full Text] [Related]
34. Effects of CO Hirose T; Ackerly DD; Traw MB; Bazzaz FA Oecologia; 1996 Oct; 108(2):215-223. PubMed ID: 28307832 [TBL] [Abstract][Full Text] [Related]
35. Effects of soil pyrene contamination on growth and phenolics in Norway spruce (Picea abies) are modified by elevated temperature and CO Zhang Y; Virjamo V; Du W; Yin Y; Nissinen K; Nybakken L; Guo H; Julkunen-Tiitto R Environ Sci Pollut Res Int; 2018 May; 25(13):12788-12799. PubMed ID: 29473139 [TBL] [Abstract][Full Text] [Related]
36. Which are the most important parameters for modelling carbon assimilation in boreal Norway spruce under elevated [CO(2)] and temperature conditions? Hall M; Medlyn BE; Abramowitz G; Franklin O; Räntfors M; Linder S; Wallin G Tree Physiol; 2013 Nov; 33(11):1156-76. PubMed ID: 23525155 [TBL] [Abstract][Full Text] [Related]
38. Activity of surface-casting earthworms in a calcareous grassland under elevated atmospheric CO ; Arnone Iii JA; Zaller JG Oecologia; 1997 Jul; 111(2):249-254. PubMed ID: 28308001 [TBL] [Abstract][Full Text] [Related]
39. Throughfall deposition and canopy exchange processes along a vertical gradient within the canopy of beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst). Adriaenssens S; Hansen K; Staelens J; Wuyts K; De Schrijver A; Baeten L; Boeckx P; Samson R; Verheyen K Sci Total Environ; 2012 Mar; 420():168-82. PubMed ID: 22325986 [TBL] [Abstract][Full Text] [Related]
40. Complex Physiological Response of Norway Spruce to Atmospheric Pollution - Decreased Carbon Isotope Discrimination and Unchanged Tree Biomass Increment. Čada V; Šantrůčková H; Šantrůček J; Kubištová L; Seedre M; Svoboda M Front Plant Sci; 2016; 7():805. PubMed ID: 27375659 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]