These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

539 related articles for article (PubMed ID: 28307286)

  • 41. Nitrate and ammonium uptake for single-and mixed-species communities grown at elevated CO
    Jackson RB; Reynolds HL
    Oecologia; 1996 Jan; 105(1):74-80. PubMed ID: 28307124
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Will rising atmospheric CO
    Hirschel G; Körner C; Arnone Iii JA
    Oecologia; 1997 Apr; 110(3):387-392. PubMed ID: 28307228
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Plant diversity influenced gross nitrogen mineralization, microbial ammonium consumption and gross inorganic N immobilization in a grassland experiment.
    Lama S; Velescu A; Leimer S; Weigelt A; Chen H; Eisenhauer N; Scheu S; Oelmann Y; Wilcke W
    Oecologia; 2020 Jul; 193(3):731-748. PubMed ID: 32737568
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Elevated CO
    Cotrufo MF; Ineson P
    Oecologia; 1996 Jun; 106(4):525-530. PubMed ID: 28307453
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ammonium and nitrate acquisition by plants in response to elevated CO2 concentration: the roles of root physiology and architecture.
    Bauer GA; Berntson GM
    Tree Physiol; 2001 Feb; 21(2-3):137-44. PubMed ID: 11303644
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests.
    Augusto L; De Schrijver A; Vesterdal L; Smolander A; Prescott C; Ranger J
    Biol Rev Camb Philos Soc; 2015 May; 90(2):444-66. PubMed ID: 24916992
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Response of N cycling to nutrient inputs in forest soils across a 1000-3000 m elevation gradient in the Ecuadorian Andes.
    Baldos AP; Corre MD; Veldkamp E
    Ecology; 2015 Mar; 96(3):749-61. PubMed ID: 26236871
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Decreased atmospheric nitrogen deposition in eastern North America: Predicted responses of forest ecosystems.
    Gilliam FS; Burns DA; Driscoll CT; Frey SD; Lovett GM; Watmough SA
    Environ Pollut; 2019 Jan; 244():560-574. PubMed ID: 30384062
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest.
    Finzi AC; Moore DJ; DeLucia EH; Lichter J; Hofmockel KS; Jackson RB; Kim HS; Matamala R; McCarthy HR; Oren R; Pippen JS; Schlesinger WH
    Ecology; 2006 Jan; 87(1):15-25. PubMed ID: 16634293
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nitrogen cycling during seven years of atmospheric CO2 enrichment in a scrub oak woodland.
    Hungate BA; Johnson DW; Dijkstra P; Hymus G; Stiling P; Megonigal JP; Pagel AL; Moan JL; Day F; Li J; Hinkle CR; Drake BG
    Ecology; 2006 Jan; 87(1):26-40. PubMed ID: 16634294
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Carbon control on terrestrial ecosystem function across contrasting site productivities: the carbon connection revisited.
    Dove NC; Stark JM; Newman GS; Hart SC
    Ecology; 2019 Jul; 100(7):e02695. PubMed ID: 31120557
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Responses of the natural abundance of carbon and nitrogen isotopes of Quercus mongolica leaf and soil to elevated CO
    Sun JF; Dai WW; He TX; Peng B; Jiang P; Han SJ; Bai E
    Ying Yong Sheng Tai Xue Bao; 2017 Jul; 28(7):2179-2185. PubMed ID: 29741048
    [TBL] [Abstract][Full Text] [Related]  

  • 53. No cumulative effect of 10 years of elevated [CO2 ] on perennial plant biomass components in the Mojave Desert.
    Newingham BA; Vanier CH; Charlet TN; Ogle K; Smith SD; Nowak RS
    Glob Chang Biol; 2013 Jul; 19(7):2168-81. PubMed ID: 23505209
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Short-term carbon cycling responses of a mature eucalypt woodland to gradual stepwise enrichment of atmospheric CO2 concentration.
    Drake JE; Macdonald CA; Tjoelker MG; Crous KY; Gimeno TE; Singh BK; Reich PB; Anderson IC; Ellsworth DS
    Glob Chang Biol; 2016 Jan; 22(1):380-90. PubMed ID: 26426394
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Leaf quality and insect herbivory in model tropical plant communities after long-term exposure to elevated atmospheric CO
    Arnone JA; Zaller JG; Körner C; Ziegler C; Zandt H
    Oecologia; 1995 Sep; 104(1):72-78. PubMed ID: 28306915
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Carbon budget of Pinus sylvestris saplings after four years of exposure to elevated atmospheric carbon dioxide concentration.
    Janssens IA; Medlyn B; Gielen B; Laureysens I; Jach ME; Van Hove D; Ceulemans R
    Tree Physiol; 2005 Mar; 25(3):325-37. PubMed ID: 15631981
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plants control the seasonal dynamics of microbial N cycling in a beech forest soil by belowground C allocation.
    Kaiser C; Fuchslueger L; Koranda M; Gorfer M; Stange CF; Kitzler B; Rasche F; Strauss J; Sessitsch A; Zechmeister-Boltenstern S; Richter A
    Ecology; 2011 May; 92(5):1036-51. PubMed ID: 21661565
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nonlinear responses of total belowground carbon flux and its components to increased nitrogen availability in temperate forests.
    Zeng W; Zhang J; Dong L; Wang W; Zeng H
    Sci Total Environ; 2020 May; 715():136954. PubMed ID: 32041052
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation.
    Phillips RP; Finzi AC; Bernhardt ES
    Ecol Lett; 2011 Feb; 14(2):187-94. PubMed ID: 21176050
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CO
    Bazzaz FA; Miao SL; Wayne PM
    Oecologia; 1993 Dec; 96(4):478-482. PubMed ID: 28312453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.