These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28307350)

  • 1. Leaf and canopy responses to elevated CO
    Ellsworth DS; Oren R; Huang C; Phillips N; Hendrey GR
    Oecologia; 1995 Oct; 104(2):139-146. PubMed ID: 28307350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone.
    Uddling J; Teclaw RM; Pregitzer KS; Ellsworth DS
    Tree Physiol; 2009 Nov; 29(11):1367-80. PubMed ID: 19773339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Canopy position and needle age affect photosynthetic response in field-grown Pinus radiata after five years of exposure to elevated carbon dioxide partial pressure.
    Tissue DT; Griffin KL; Turnbull MH; Whitehead D
    Tree Physiol; 2001 Aug; 21(12-13):915-23. PubMed ID: 11498338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Branch growth and gas exchange in 13-year-old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization.
    Maier CA; Johnsen KH; Butnor J; Kress LW; Anderson PH
    Tree Physiol; 2002 Nov; 22(15-16):1093-106. PubMed ID: 12414369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photosynthetic sunfleck utilization potential of understory saplings growing under elevated CO
    Naumburg E; Ellsworth DS
    Oecologia; 2000 Feb; 122(2):163-174. PubMed ID: 28308370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships between net photosynthesis and foliar nitrogen concentrations in a loblolly pine forest ecosystem grown in elevated atmospheric carbon dioxide.
    Springer CJ; DeLucia EH; Thomas RB
    Tree Physiol; 2005 Apr; 25(4):385-94. PubMed ID: 15687087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Canopy position affects photosynthetic adjustments to long-term elevated CO2 concentration (FACE) in aging needles in a mature Pinus taeda forest.
    Crous KY; Ellsworth DS
    Tree Physiol; 2004 Sep; 24(9):961-70. PubMed ID: 15234893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of CO2 enrichment on the photosynthetic light response of sun and shade leaves of canopy sweetgum (Liquidambar styraciflua) in a forest ecosystem.
    Herrick JD; Thomas RB
    Tree Physiol; 1999 Oct; 19(12):779-786. PubMed ID: 10562393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stomatal conductance and not stomatal density determines the long-term reduction in leaf transpiration of poplar in elevated CO2.
    Tricker PJ; Trewin H; Kull O; Clarkson GJ; Eensalu E; Tallis MJ; Colella A; Doncaster CP; Sabatti M; Taylor G
    Oecologia; 2005 May; 143(4):652-60. PubMed ID: 15909132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. No down-regulation of leaf photosynthesis in mature forest trees after three years of exposure to elevated CO2.
    Zotz G; Pepin S; Körner C
    Plant Biol (Stuttg); 2005 Jul; 7(4):369-74. PubMed ID: 16025409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses of foliar gas exchange to long-term elevated CO(2) concentrations in mature loblolly pine trees.
    Liu S; Teskey RO
    Tree Physiol; 1995 Jun; 15(6):351-9. PubMed ID: 14965943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elevated carbon dioxide does not affect average canopy stomatal conductance of Pinus taeda L.
    Pataki DE; Oren R; Tissue DT
    Oecologia; 1998 Nov; 117(1-2):47-52. PubMed ID: 28308505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiation-use efficiency of a forest exposed to elevated concentrations of atmospheric carbon dioxide.
    DeLucia EH; George K; Hamilton JG
    Tree Physiol; 2002 Oct; 22(14):1003-10. PubMed ID: 12359527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosynthetic enhancement by elevated CO₂ depends on seasonal temperatures for warmed and non-warmed Eucalyptus globulus trees.
    Quentin AG; Crous KY; Barton CV; Ellsworth DS
    Tree Physiol; 2015 Nov; 35(11):1249-63. PubMed ID: 26496960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of CO
    Tolley LC; Strain BR
    Oecologia; 1985 Jan; 65(2):166-172. PubMed ID: 28310662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increases in atmospheric CO2 have little influence on transpiration of a temperate forest canopy.
    Tor-ngern P; Oren R; Ward EJ; Palmroth S; McCarthy HR; Domec JC
    New Phytol; 2015 Jan; 205(2):518-25. PubMed ID: 25346045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of elevated atmospheric CO
    Jing LQ; Hu SW; Lu Q; Niu XC; Wang YX; Zhu JG; Wang YL; Yang LX
    Ying Yong Sheng Tai Xue Bao; 2019 Mar; 30(3):884-892. PubMed ID: 30912381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Leaf photosynthetic acclimation of Echinochloa crusgalli grown in rice field to free-air CO2 enrichment (FACE)].
    Chen G; Liao Y; Cai S; Zeng Q; Zhu J; Han Y; Liu G; Xu D
    Ying Yong Sheng Tai Xue Bao; 2002 Oct; 13(10):1201-4. PubMed ID: 12557659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is photosynthetic enhancement sustained through three years of elevated CO2 exposure in 175-year-old Quercus robur?
    Gardner A; Ellsworth DS; Crous KY; Pritchard J; MacKenzie AR
    Tree Physiol; 2022 Jan; 42(1):130-144. PubMed ID: 34302175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-term effects of fertilization on photosynthesis and leaf morphology of field-grown loblolly pine following long-term exposure to elevated CO(2) concentration.
    Maier CA; Palmroth S; Ward E
    Tree Physiol; 2008 Apr; 28(4):597-606. PubMed ID: 18244945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.