These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 28307599)

  • 21. Modelling hydration and photosystem II activation in relation to in situ rain and humidity patterns: a tool to compare performance of rare and generalist epiphytic lichens.
    Cabrajić AV; Lidén M; Lundmark T; Ottosson-Löfvenius M; Palmqvist K
    Plant Cell Environ; 2010 May; 33(5):840-50. PubMed ID: 20051041
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Apparent electron transport rate - a non-invasive proxy of photosynthetic CO
    Solhaug KA; Asplund J; Gauslaa Y
    Planta; 2021 Jan; 253(1):14. PubMed ID: 33392847
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Size-dependent growth of two old-growth associated macrolichen species.
    Gauslaa Y; Palmqvist K; Solhaug KA; Hilmo O; Holien H; Nybakken L; Ohlson M
    New Phytol; 2009; 181(3):683-92. PubMed ID: 19032441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Species-specific activation time-lags can explain habitat restrictions in hydrophilic lichens.
    Lidén M; Jonsson Cabrajić AV; Ottosson-Löfvenius M; Palmqvist K; Lundmark T
    Plant Cell Environ; 2010 May; 33(5):851-62. PubMed ID: 20051040
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Responses of the green algal foliose lichen Platismatia glauca to increased nitrogen supply.
    Palmqvist K; Dahlman L
    New Phytol; 2006; 171(2):343-56. PubMed ID: 16866941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CO
    Palmqvist K; Dahlman L; Valladares F; Tehler A; Sancho LG; Mattsson JE
    Oecologia; 2002 Nov; 133(3):295-306. PubMed ID: 28466222
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Morphological, photosynthetic and water relations traits underpin the contrasting success of two tropical lichen groups at the interior and edge of forest fragments.
    Pardow A; Hartard B; Lakatos M
    AoB Plants; 2010; 2010():plq004. PubMed ID: 22476062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting lichen hydration using biophysical models.
    Jonsson AV; Moen J; Palmqvist K
    Oecologia; 2008 May; 156(2):259-73. PubMed ID: 18305964
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Which are the most important parameters for modelling carbon assimilation in boreal Norway spruce under elevated [CO(2)] and temperature conditions?
    Hall M; Medlyn BE; Abramowitz G; Franklin O; Räntfors M; Linder S; Wallin G
    Tree Physiol; 2013 Nov; 33(11):1156-76. PubMed ID: 23525155
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of season and low-level air pollution on physiology and element content of lichens from the U.S. Pacific Northwest.
    Ra HS; Geiser LH; Crang RF
    Sci Total Environ; 2005 May; 343(1-3):155-67. PubMed ID: 15862842
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microclimatic Alteration after Logging Affects the Growth of the Endangered Lichen
    Di Nuzzo L; Giordani P; Benesperi R; Brunialti G; Fačkovcová Z; Frati L; Nascimbene J; Ravera S; Vallese C; Paoli L; Bianchi E
    Plants (Basel); 2022 Jan; 11(3):. PubMed ID: 35161276
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Old-growth forest versus generalist lichens: Sensitivity to prolonged desiccation stress and photosynthesis reactivation rate upon rehydration.
    Osyczka P; Kościelniak R; Stanek M
    Mycologia; 2024; 116(1):31-43. PubMed ID: 38039398
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spring photosynthetic recovery of boreal Norway spruce under conditions of elevated [CO(2)] and air temperature.
    Wallin G; Hall M; Slaney M; Räntfors M; Medhurst J; Linder S
    Tree Physiol; 2013 Nov; 33(11):1177-91. PubMed ID: 24169104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Net photosynthetic response patterns of the basidiomycete lichen Cora pavonia (Web.) E. Fries from the tropical volcano La Soufrière (Guadeloupe).
    Coxson DS
    Oecologia; 1987 Sep; 73(3):454-458. PubMed ID: 28311529
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modelling the carbon balance in bryophytes and lichens: Presentation of PoiCarb 1.0, a new model for explaining distribution patterns and predicting climate-change effects.
    Nikolić N; Zotz G; Bader MY
    Am J Bot; 2024 Jan; 111(1):e16266. PubMed ID: 38038342
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ecophysiological investigations on lichens of the Negev desert : V. A model to simulate net photosynthesis and respiration ofRamalina maciformis.
    Lange OL; Geiger IL; Schulze E-
    Oecologia; 1977 Sep; 28(3):247-259. PubMed ID: 28309250
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Short- and long-term freezing effects in a coastal (Lobaria virens) versus a widespread lichen (L. pulmonaria).
    Solhaug KA; Chowdhury DP; Gauslaa Y
    Cryobiology; 2018 Jun; 82():124-129. PubMed ID: 29571630
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbon dioxide exchange of Antarctic crustose lichens in situ measured with a CO
    Kappen L; Schroeter B; Sancho LG
    Oecologia; 1990 Mar; 82(3):311-316. PubMed ID: 28312704
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential sensitivity of four Lobaria lichens to copper in vitro.
    Cabral JP
    Environ Toxicol Chem; 2002 Nov; 21(11):2468-76. PubMed ID: 12389928
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Water status related photosynthesis and carbon isotope discrimination in species of the lichen genusPseudocyphellaria with green or blue-green photobionts and in photosymbiodemes.
    Lange OL; Green TG; Ziegler H
    Oecologia; 1988 May; 75(4):494-501. PubMed ID: 28312421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.