These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 28307674)

  • 1. Increased allocation to external hyphae of arbuscular mycorrhizal fungi under CO
    Sanders IR; Streitwolf-Engel R; van der Heijden MG; Boller T; Wiemken A
    Oecologia; 1998 Dec; 117(4):496-503. PubMed ID: 28307674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil.
    Zhu YG; Smith FA; Smith SE
    Mycorrhiza; 2003 Apr; 13(2):93-100. PubMed ID: 12682831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does percent root length colonization and soil hyphal length reflect the extent of colonization for all AMF?
    Hart MM; Reader RJ
    Mycorrhiza; 2002 Dec; 12(6):297-301. PubMed ID: 12466917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arbuscular mycorrhiza infection enhances the growth response of Lolium perenne to elevated atmospheric pCO(2).
    Hartwig UA; Wittmann P; Braun R; Hartwig-Räz B; Jansa J; Mozafar A; Lüscher A; Leuchtmann A; Frossard E; Nösberger J
    J Exp Bot; 2002 May; 53(371):1207-13. PubMed ID: 11971931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arbuscular mycorrhizal fungi ameliorate temperature stress in thermophilic plants.
    Bunn R; Lekberg Y; Zabinski C
    Ecology; 2009 May; 90(5):1378-88. PubMed ID: 19537557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response of soil biota to elevated atmospheric CO
    Lussenhop J; Treonis A; Curtis PS; Teeri JA; Vogel CS
    Oecologia; 1998 Jan; 113(2):247-251. PubMed ID: 28308204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arbuscular mycorrhizal hyphal respiration makes a large contribution to soil respiration in a subtropical forest under various N input rates.
    Zheng X; An Z; Cao M; Wu F; Guan X; Chang SX; Liu S; Jiang J
    Sci Total Environ; 2022 Dec; 852():158309. PubMed ID: 36030872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Appressoria and phosphorus fluxes in mycorrhizal plants: connections between soil- and plant-based hyphae.
    Pepe A; Giovannetti M; Sbrana C
    Mycorrhiza; 2020 Sep; 30(5):589-600. PubMed ID: 32533256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding interaction effect of arbuscular mycorrhizal fungi in rice under elevated carbon dioxide conditions.
    Panneerselvam P; Sahoo S; Senapati A; Kumar U; Mitra D; Parameswaran C; Anandan A; Kumar A; Jahan A; Nayak AK
    J Basic Microbiol; 2019 Dec; 59(12):1217-1228. PubMed ID: 31613012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arbuscular mycorrhizal fungi negatively affect soil seed bank viability.
    Maighal M; Salem M; Kohler J; Rillig MC
    Ecol Evol; 2016 Nov; 6(21):7683-7689. PubMed ID: 30128121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon for nutrient exchange between arbuscular mycorrhizal fungi and wheat varies according to cultivar and changes in atmospheric carbon dioxide concentration.
    Thirkell TJ; Pastok D; Field KJ
    Glob Chang Biol; 2020 Mar; 26(3):1725-1738. PubMed ID: 31645088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant species differ in their ability to reduce allocation to non-beneficial arbuscular mycorrhizal fungi.
    Grman E
    Ecology; 2012 Apr; 93(4):711-8. PubMed ID: 22690621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorus uptake by arbuscular mycorrhizal hyphae does not increase when the host plant grows under atmospheric CO
    Gavito ME; Bruhn D; Jakobsen I
    New Phytol; 2002 Jun; 154(3):751-760. PubMed ID: 33873464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationships between the litter colonization by saprotrophic and arbuscular mycorrhizal fungi with depth in a tropical forest.
    Posada RH; Madriñan S; Rivera EL
    Fungal Biol; 2012 Jul; 116(7):747-55. PubMed ID: 22749161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi.
    Scheublin TR; Sanders IR; Keel C; van der Meer JR
    ISME J; 2010 Jun; 4(6):752-63. PubMed ID: 20147983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of arbuscular mycorrhizal colonization on whole-plant respiration and thermal acclimation of tropical tree seedlings.
    Fahey C; Winter K; Slot M; Kitajima K
    Ecol Evol; 2016 Feb; 6(3):859-70. PubMed ID: 26865973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial soil heterogeneity has a greater effect on symbiotic arbuscular mycorrhizal fungal communities and plant growth than genetic modification with Bacillus thuringiensis toxin genes.
    Cheeke TE; Schütte UM; Hemmerich CM; Cruzan MB; Rosenstiel TN; Bever JD
    Mol Ecol; 2015 May; 24(10):2580-93. PubMed ID: 25827202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions.
    Zhang L; Shi N; Fan J; Wang F; George TS; Feng G
    Environ Microbiol; 2018 Jul; 20(7):2639-2651. PubMed ID: 29901256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Options of partners improve carbon for phosphorus trade in the arbuscular mycorrhizal mutualism.
    Argüello A; O'Brien MJ; van der Heijden MG; Wiemken A; Schmid B; Niklaus PA
    Ecol Lett; 2016 Jun; 19(6):648-56. PubMed ID: 27074533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arbuscular Mycorrhization Enhances Nitrogen, Phosphorus and Potassium Accumulation in
    Shi S; Luo X; Dong X; Qiu Y; Xu C; He X
    J Fungi (Basel); 2021 May; 7(5):. PubMed ID: 34063150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.