These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 28307727)

  • 1. A three-dimensional crown architecture model for assessment of light capture and carbon gain by understory plants.
    Pearcy RW; Yang W
    Oecologia; 1996 Oct; 108(1):1-12. PubMed ID: 28307727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A functional analysis of the crown architecture of tropical forest Psychotria species: do species vary in light capture efficiency and consequently in carbon gain and growth?
    Pearcy RW; Valladares F; Wright SJ; de Paulis EL
    Oecologia; 2004 Apr; 139(2):163-77. PubMed ID: 14767753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convergence in light capture efficiencies among tropical forest understory plants with contrasting crown architectures: a case of morphological compensation.
    Valladares F; Skillman JB; Pearcy RW
    Am J Bot; 2002 Aug; 89(8):1275-84. PubMed ID: 21665729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The functional ecology of shoot architecture in sun and shade plants of Heteromeles arbutifolia M. Roem., a Californian chaparral shrub.
    Valladares F; Pearcy RW
    Oecologia; 1998 Mar; 114(1):1-10. PubMed ID: 28307546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Petiole twisting in the crowns of Psychotria liminesis: implications for light interception and daily carbon gain.
    Gálvez D; Pearcy RW
    Oecologia; 2003 Mar; 135(1):22-9. PubMed ID: 12647100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neighborhood structure influences the convergence in light capture efficiency and carbon gain: an architectural approach for cloud forest shrubs.
    Guzmán Q JA; Cordero S RA
    Tree Physiol; 2016 Jun; 36(6):712-24. PubMed ID: 27013125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional correlates of leaf demographic response to gap release in saplings of a shade-tolerant tree, Elateriospermum tapos.
    Osada N; Takeda H; Kitajima K; Pearcy RW
    Oecologia; 2003 Oct; 137(2):181-7. PubMed ID: 12883987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of leaf flutter on the light environment of poplars.
    Roden JS; Pearcy RW
    Oecologia; 1993 Mar; 93(2):201-207. PubMed ID: 28313608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The geometry of light interception by shoots of Heteromeles arbutifolia: morphological and physiological consequences for individual leaves.
    Valladares F; Pearcy RW
    Oecologia; 1999 Nov; 121(2):171-182. PubMed ID: 28308557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Daily carbon gain by Adenocaulon bicolor (Asteraceae), a redwood forest understory herb, in relation to its light environment.
    Pfitsch WA; Pearcy RW
    Oecologia; 1989 Sep; 80(4):465-470. PubMed ID: 28312829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crown architecture in sun and shade environments: assessing function and trade-offs with a three-dimensional simulation model.
    Pearcy RW; Muraoka H; Valladares F
    New Phytol; 2005 Jun; 166(3):791-800. PubMed ID: 15869642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xanthophyll-cycle pigments and photosynthetic capacity in tropical forest species: a comparative field study on canopy, gap and understory plants.
    Königer M; Harris GC; Virgo A; Winter K
    Oecologia; 1995 Nov; 104(3):280-290. PubMed ID: 28307583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photosynthetic responses to light variation in rainforest species : II. Carbon gain and photosynthetic efficiency during lightflecks.
    Chazdon RL; Pearcy RW
    Oecologia; 1986 Jul; 69(4):524-531. PubMed ID: 28311611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling dynamic understory photosynthesis of contrasting species in ambient and elevated carbon dioxide.
    Naumburg E; Ellsworth DS; Katul GG
    Oecologia; 2001 Feb; 126(4):487-499. PubMed ID: 28547233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaf orientation and light interception by juvenile Pseudopanax crassifolius(Cunn.) C. Koch in a partially shaded forest environment.
    Clearwater MJ; Gould KS
    Oecologia; 1995 Nov; 104(3):363-371. PubMed ID: 28307593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of sunflecks on the δ
    Pearcy RW; Pfitsch WA
    Oecologia; 1991 May; 86(4):457-462. PubMed ID: 28313325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaf δ
    Berry SC; Varney GT; Flanagan LB
    Oecologia; 1997 Feb; 109(4):499-506. PubMed ID: 28307333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthetic responses to dynamic light under field conditions in six tropical rainforest shrubs occuring along a light gradient.
    Valladares F; Allen MT; Pearcy RW
    Oecologia; 1997 Aug; 111(4):505-514. PubMed ID: 28308111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Light environment in the understory of an Andean cloud forest: canopy structure and climatic seasonality].
    Quevedo Rojas AM; Schwarzkopf T; García C; Jerez Rico M
    Rev Biol Trop; 2016 Dec; 64(4):1699-1707. PubMed ID: 29465946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The effect of light and temperature of the CO
    Schulze ED
    Oecologia; 1972 Sep; 9(3):235-258. PubMed ID: 28313125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.