These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 28307881)

  • 1. The dietary basis for temporal partitioning: food habits of coexisting Acomys species.
    Kronfeld-Schor N; Dayan T
    Oecologia; 1999 Oct; 121(1):123-128. PubMed ID: 28307881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interspecific competition and torpor in golden spiny mice: two sides of the energy-acquisition coin.
    Levy O; Dayan T; Kronfeld-Schor N
    Integr Comp Biol; 2011 Sep; 51(3):441-8. PubMed ID: 21719432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal partitioning among diurnally and nocturnally active desert spiny mice: energy and water turnover costs.
    Kronfeld-Schor N; Shargal E; Haim A; Dayan T; Zisapel N; Heldmaier G
    J Therm Biol; 2001 Apr; 26(2):139-142. PubMed ID: 11163930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal thermogenic acclimation of diurnally and nocturnally active desert spiny mice.
    Kronfeld-Schor N; Haim A; Dayan T; Zisapel N; Klingenspor M; Heldmaier G
    Physiol Biochem Zool; 2000; 73(1):37-44. PubMed ID: 10685905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Telemetric field studies of body temperature and activity rhythms of Acomys russatus and A. cahirinus in the Judean Desert of Israel.
    Elvert R; Kronfeld N; Dayan T; Haim A; Zisapel N; Heldmaier G
    Oecologia; 1999 Jun; 119(4):484-492. PubMed ID: 28307706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Daily rhythms of body temperature in Acomys russatus: the response to chemical signals released by Acomys cahirinus.
    Fluxman S; Haim A
    Chronobiol Int; 1993 Jun; 10(3):159-64. PubMed ID: 8319316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fitness effects of interspecific competition between two species of desert rodents.
    Katz N; Dayan T; Kronfeld-Schor N
    Zoology (Jena); 2018 Jun; 128():62-68. PubMed ID: 29699824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of congeneric chemical signals of different ages on foraging response and food choice in the field by golden spiny mice (Acomys russatus).
    Dobly A; Rozenfeld FM; Haim A
    J Chem Ecol; 2001 Oct; 27(10):1953-61. PubMed ID: 11710604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal segregation in coexisting Acomys species: the role of odour.
    Haim A; Rozenfeld FM
    Physiol Behav; 1993 Dec; 54(6):1159-61. PubMed ID: 8295957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen consumption and body temperature rhythms in the golden spiny mouse: responses to changes in day length.
    Haim A; Zisapel N
    Physiol Behav; 1995 Oct; 58(4):775-8. PubMed ID: 8559790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic and metabolic responses to affluent diet of two diabetes-prone species of spiny mice: Acomys cahirinus and Acomys russatus.
    Shafrir E; Adler JH
    Int J Biochem; 1983; 15(12):1439-46. PubMed ID: 6360745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Daily rhythms of metabolic rates: Role of chemical signals in coexistence of spiny mice of the genusAcomys.
    Haim A; Fluxman S
    J Chem Ecol; 1996 Feb; 22(2):223-9. PubMed ID: 24227405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biophysical modeling of the temporal niche: from first principles to the evolution of activity patterns.
    Levy O; Dayan T; Kronfeld-Schor N; Porter WP
    Am Nat; 2012 Jun; 179(6):794-804. PubMed ID: 22617266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of conspecific and heterospecific urine odors on the foraging behavior of the golden spiny mouse.
    Baudoin C; Haim A; Durand JL
    Integr Zool; 2013 Apr; 8 Suppl 1():1-8. PubMed ID: 23621466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of increased dietary salinity on the reproductive status and energy intake of xeric and mesic populations of the spiny mouse, Acomys.
    Wube T; Haim A; Fares F
    Physiol Behav; 2009 Jan; 96(1):122-7. PubMed ID: 18824007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Masking and temporal niche switches in spiny mice.
    Cohen R; Smale L; Kronfeld-Schor N
    J Biol Rhythms; 2010 Feb; 25(1):47-52. PubMed ID: 20075300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of the lunar cycle on fecal cortisol metabolite levels and foraging ecology of nocturnally and diurnally active spiny mice.
    Gutman R; Dayan T; Levy O; Schubert I; Kronfeld-Schor N
    PLoS One; 2011; 6(8):e23446. PubMed ID: 21829733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship between the golden spiny mouse circadian system and its diurnal activity: an experimental field enclosures and laboratory study.
    Levy O; Dayan T; Kronfeld-Schor N
    Chronobiol Int; 2007; 24(4):599-613. PubMed ID: 17701675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal resource partitioning mitigates interspecific competition and promotes coexistence among insect parasites.
    Hood GR; Blankinship D; Doellman MM; Feder JL
    Biol Rev Camb Philos Soc; 2021 Oct; 96(5):1969-1988. PubMed ID: 34041840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticity of circadian activity and body temperature rhythms in golden spiny mice.
    Cohen R; Smale L; Kronfeld-Schor N
    Chronobiol Int; 2009 Apr; 26(3):430-46. PubMed ID: 19360488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.