These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28307955)

  • 1. Meteorological forcing of plankton dynamics in a large and deep continental European lake.
    Straile D
    Oecologia; 2000 Jan; 122(1):44-50. PubMed ID: 28307955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water temperature and mixing depth affect timing and magnitude of events during spring succession of the plankton.
    Berger SA; Diehl S; Stibor H; Trommer G; Ruhenstroth M; Wild A; Weigert A; Jäger CG; Striebel M
    Oecologia; 2007 Jan; 150(4):643-54. PubMed ID: 17024384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenological changes in the Northwestern Mediterranean copepods Centropages typicus and Temora stylifera linked to climate forcing.
    Molinero JC; Ibanez F; Souissi S; Chifflet M; Nival P
    Oecologia; 2005 Oct; 145(4):640-9. PubMed ID: 15965753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. North Atlantic Oscillation synchronizes food-web interactions in central European lakes.
    Straile D
    Proc Biol Sci; 2002 Feb; 269(1489):391-5. PubMed ID: 11886627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of climate warming, North Atlantic Oscillation, and El Niño-Southern Oscillation on thermal conditions and plankton dynamics in northern hemispheric lakes.
    Gerten D; Adrian R
    ScientificWorldJournal; 2002 Mar; 2():586-606. PubMed ID: 12805986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The first decade of oligotrophication in Lake Constance : I. The response of phytoplankton biomass and cell size.
    Gaedke U; Schweizer A
    Oecologia; 1993 Mar; 93(2):268-275. PubMed ID: 28313617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Warmer, deeper, and greener mixed layers in the North Atlantic subpolar gyre over the last 50 years.
    Martinez E; Raitsos DE; Antoine D
    Glob Chang Biol; 2016 Feb; 22(2):604-12. PubMed ID: 26386263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate-driven warming during spring destabilises a Daphnia population: a mechanistic food web approach.
    Wagner A; Benndorf J
    Oecologia; 2007 Mar; 151(2):351-64. PubMed ID: 17120058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consumer-resource dynamics is an eco-evolutionary process in a natural plankton community.
    Schaffner LR; Govaert L; De Meester L; Ellner SP; Fairchild E; Miner BE; Rudstam LG; Spaak P; Hairston NG
    Nat Ecol Evol; 2019 Sep; 3(9):1351-1358. PubMed ID: 31427731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-Term Patterns in the Population Dynamics of Daphnia longispina, Leptodora kindtii and Cyanobacteria in a Shallow Reservoir: A Self-Organising Map (SOM) Approach.
    Wojtal-Frankiewicz A; Kruk A; Frankiewicz P; Oleksińska Z; Izydorczyk K
    PLoS One; 2015; 10(12):e0144109. PubMed ID: 26633032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stoichiometric mismatch causes a warming-induced regime shift in experimental plankton communities.
    Diehl S; Berger SA; Uszko W; Stibor H
    Ecology; 2022 May; 103(5):e3674. PubMed ID: 35253210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterns and mechanisms of phytoplankton variability in Lake Washington (USA).
    Arhonditsis GB; Winder M; Brett MT; Schindler DE
    Water Res; 2004 Nov; 38(18):4013-27. PubMed ID: 15380991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature is the key factor explaining interannual variability of Daphnia development in spring: a modelling study.
    Schalau K; Rinke K; Straile D; Peeters F
    Oecologia; 2008 Sep; 157(3):531-43. PubMed ID: 18574598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Historical changes in the ecosystem condition of a small mountain lake over the past 60 years as revealed by plankton remains and Daphnia ephippial carapaces stored in lake sediments.
    Ohtsuki H; Awano T; Tsugeki NK; Ishida S; Oda H; Makino W; Urabe J
    PLoS One; 2015; 10(3):e0119767. PubMed ID: 25757090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of climate warming on phenological asynchrony of plankton dynamics across Europe.
    Gronchi E; Straile D; Diehl S; Jöhnk KD; Peeters F
    Ecol Lett; 2023 May; 26(5):717-728. PubMed ID: 36870064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Planktonic events may cause polymictic-dimictic regime shifts in temperate lakes.
    Shatwell T; Adrian R; Kirillin G
    Sci Rep; 2016 Apr; 6():24361. PubMed ID: 27074883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Successional dynamics in the seasonally forced diamond food web.
    Klausmeier CA; Litchman E
    Am Nat; 2012 Jul; 180(1):1-16. PubMed ID: 22673647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decadal phytoplankton dynamics in response to episodic climatic disturbances in a subtropical deep freshwater ecosystem.
    Ko CY; Lai CC; Hsu HH; Shiah FK
    Water Res; 2017 Feb; 109():102-113. PubMed ID: 27866101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life history variation within a parthenogenetic population of Daphnia parvula (Crustacea: Cladocera).
    Pace ML; Porter K; Feig YS
    Oecologia; 1984 Jul; 63(1):43-51. PubMed ID: 28311164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of climate variability on whitefish (Coregonus lavaretus) year-class strength in a deep, warm monomictic lake.
    Straile D; Eckmann R; Jüngling T; Thomas G; Löffler H
    Oecologia; 2007 Mar; 151(3):521-9. PubMed ID: 17109176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.