These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 28307989)
41. Variation in photoperiod response corresponds to differences in circadian light sensitivity in northern and southern Nasonia vitripennis lines. Floessner TSE; Benetta ED; Beersma DGM; Hut RA J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 Jul; 210(4):667-676. PubMed ID: 37853248 [TBL] [Abstract][Full Text] [Related]
42. [Temperature and photoperiodic control of diapause induction in the ant Lepisiota semenovi (Hymenoptera, Formicidae) from Turkmenistan]. Kipiatkov VE; Lopatina EB Zh Evol Biokhim Fiziol; 2009; 45(2):191-6. PubMed ID: 19435261 [TBL] [Abstract][Full Text] [Related]
43. Seasonal adaptations to day length in ecotypes of Diorhabda spp. (Coleoptera: Chrysomelidae) inform selection of agents against saltcedars (Tamarix spp.). Dalin P; Bean DW; Dudley TL; Carney VA; Eberts D; Gardner KT; Hebertson E; Jones EN; Kazmer DJ; Michels GJ; O'Meara SA; Thompson DC Environ Entomol; 2010 Oct; 39(5):1666-75. PubMed ID: 22546466 [TBL] [Abstract][Full Text] [Related]
44. Effect of photoperiod and temperature on the intensity of pupal diapause in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Chen C; Xia QW; Fu S; Wu XF; Xue FS Bull Entomol Res; 2014 Feb; 104(1):12-8. PubMed ID: 23651539 [TBL] [Abstract][Full Text] [Related]
45. Modulation of MnSOD protein in response to different experimental stimulation in Hyphantria cunea. Kim YI; Kim HJ; Kwon YM; Kang YJ; Lee IH; Jin BR; Han YS; Cheon HM; Ha NG; Seo SJ Comp Biochem Physiol B Biochem Mol Biol; 2010 Dec; 157(4):343-50. PubMed ID: 20728562 [TBL] [Abstract][Full Text] [Related]
46. Grandmaternal temperature effect on diapause induction in Trichogramma telengai (Hymenoptera: Trichogrammatidae). Reznik SY; Voinovich ND; Samartsev KG J Insect Physiol; 2020 Jul; 124():104072. PubMed ID: 32497531 [TBL] [Abstract][Full Text] [Related]
49. Influence of temperature on the photoperiodic time measurement and on the maternal induction of diapause in Trichogramma telengai: the separation of the two effects. Ya Reznik S; Voinovich ND J Insect Physiol; 2024 Jun; 155():104654. PubMed ID: 38796055 [TBL] [Abstract][Full Text] [Related]
50. Survey of the native insect natural enemies of Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) in China. Yang ZQ; Wang XY; Wei JR; Qu HR; Qiao XR Bull Entomol Res; 2008 Jun; 98(3):293-302. PubMed ID: 18312714 [TBL] [Abstract][Full Text] [Related]
51. Photoperiodism of diapause induction in Thyrassia penangae (Lepidoptera: Zygaenidae). He HM; Xian ZH; Huang F; Liu XP; Xue FS J Insect Physiol; 2009 Nov; 55(11):1003-8. PubMed ID: 19619555 [TBL] [Abstract][Full Text] [Related]
52. Population dependent effects of photoperiod on diapause related physiological traits in an invasive beetle (Leptinotarsa decemlineata). Lehmann P; Lyytinen A; Sinisalo T; Lindström L J Insect Physiol; 2012 Aug; 58(8):1146-58. PubMed ID: 22705255 [TBL] [Abstract][Full Text] [Related]
53. Small geographic variation in photoperiodic entrainment of the circannual rhythm in the varied carpet beetle, Anthrenus verbasci. Matsuno T; Kawasaki Y; Numata H Zoolog Sci; 2013 Apr; 30(4):304-10. PubMed ID: 23537241 [TBL] [Abstract][Full Text] [Related]
54. Adaptive strategies of overwintering adults: reproductive diapause and mating behavior in a grasshopper, Stenocatantops splendens (Orthoptera: Catantopidae). Zhu DH; Cui SS; Fan YS; Liu Z Insect Sci; 2013 Apr; 20(2):235-44. PubMed ID: 23955863 [TBL] [Abstract][Full Text] [Related]
55. Critical Photoperiod and Its Potential to Predict Mosquito Distributions and Control Medically Important Pests. Peffers CS; Pomeroy LW; Meuti ME J Med Entomol; 2021 Jul; 58(4):1610-1618. PubMed ID: 33835160 [TBL] [Abstract][Full Text] [Related]
56. Projecting the current and future potential global distribution of Hyphantria cunea (Lepidoptera: Arctiidae) using CLIMEX. Ge X; He S; Zhu C; Wang T; Xu Z; Zong S Pest Manag Sci; 2019 Jan; 75(1):160-169. PubMed ID: 29797397 [TBL] [Abstract][Full Text] [Related]
57. The role of photoperiod and temperature in determination of summer and winter diapause in the cabbage beetle, Colaphellus bowringi (Coleoptera: Chrysomelidae). Xue F; Spieth HR; Aiqing L; Ai H J Insect Physiol; 2002 Mar; 48(3):279-286. PubMed ID: 12770101 [TBL] [Abstract][Full Text] [Related]
58. Parental effect of diapause in relation to photoperiod and temperature in the cabbage beetle, Colaphellus bowringi (Coleoptera: Chrysomelidae). He HM; Xiao HJ; Xue FS Bull Entomol Res; 2018 Dec; 108(6):773-780. PubMed ID: 29397053 [TBL] [Abstract][Full Text] [Related]
59. Effects of temperature and photoperiod on the termination of larval diapause in Lucilia sericata (Diptera: Calliphoridae). Tachibana S; Numata H Zoolog Sci; 2004 Feb; 21(2):197-202. PubMed ID: 14993832 [TBL] [Abstract][Full Text] [Related]
60. Winter is coming: Diapause in the subtropical swallowtail butterfly Euryades corethrus (Lepidoptera, Papilionidae) is triggered by the shortening of day length and reinforced by low temperatures. Caporale A; Romanowski HP; Mega NO J Exp Zool A Ecol Integr Physiol; 2017 Apr; 327(4):182-188. PubMed ID: 29356405 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]