These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 28308028)

  • 1. The chemical composition of plant galls: are levels of nutrients and secondary compounds controlled by the gall-former?
    Hartley SE
    Oecologia; 1998 Feb; 113(4):492-501. PubMed ID: 28308028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of two gall-forming arthropods on the photosynthetic rates of their hosts.
    Larson KC
    Oecologia; 1998 Jun; 115(1-2):161-166. PubMed ID: 28308447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The gall wasp Leptocybe invasa (Hymenoptera: Eulophidae) stimulates different chemical and phytohormone responses in two Eucalyptus varieties that vary in susceptibility to galling.
    Li XQ; Liu YZ; Guo WF; Solanki MK; Yang ZD; Xiang Y; Ma ZC; Wen YG
    Tree Physiol; 2017 Sep; 37(9):1208-1217. PubMed ID: 28938058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological Response of Pedunculate Oak Trees to Gall-Inducing Cynipidae.
    Kot I; Rubinowska K
    Environ Entomol; 2018 Jun; 47(3):669-675. PubMed ID: 29659765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of whole-canopy and systemic insecticidal treatments on Callirhytis cornigera (Hymenoptera: Cynipidae) and associated parasitoids on pin oak.
    Eliason EA; Potter DA
    J Econ Entomol; 2000 Feb; 93(1):165-71. PubMed ID: 14658527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical responses induced in galls of three Cynipidae species in oak trees.
    Kot I; Jakubczyk A; Karaś M; Złotek U
    Bull Entomol Res; 2018 Aug; 108(4):494-500. PubMed ID: 29061198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotypic plasticity and similarity among gall morphotypes on a superhost, Baccharis reticularia (Asteraceae).
    Formiga AT; Silveira FA; Fernandes GW; Isaias RM
    Plant Biol (Stuttg); 2015 Mar; 17(2):512-21. PubMed ID: 25124804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic dissection of an extended phenotype: Oak galling by a cynipid gall wasp.
    Hearn J; Blaxter M; Schönrogge K; Nieves-Aldrey JL; Pujade-Villar J; Huguet E; Drezen JM; Shorthouse JD; Stone GN
    PLoS Genet; 2019 Nov; 15(11):e1008398. PubMed ID: 31682601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased photosynthesis and water potentials in Silphium integrifolium galled by cynipid wasps.
    Fay PA; Hartnett DC; Knapp AK
    Oecologia; 1993 Feb; 93(1):114-120. PubMed ID: 28313783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Host plant quality and local adaptation determine the distribution of a gall-forming herbivore.
    Egan SP; Ott JR
    Ecology; 2007 Nov; 88(11):2868-79. PubMed ID: 18051656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How detrimental are seed galls to their hosts? Plant performance, germination, developmental instability and tolerance to herbivory in Inga laurina, a leguminous tree.
    Santos JC; de Araujo NA; Venâncio H; Andrade JF; Alves-Silva E; Almeida WR; Carmo-Oliveira R
    Plant Biol (Stuttg); 2016 Nov; 18(6):962-972. PubMed ID: 27543962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors affecting components of fitness in a gall-making wasp (Cynips divisa Hartig).
    Sitch TA; Grewcock DA; Gilbert FS
    Oecologia; 1988 Aug; 76(3):371-375. PubMed ID: 28312016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal variation in phenolic levels in galls of calophyids on Schinus polygama (Anacardiaceae).
    Guedes LM; Aguilera N; Ferreira BG; Riquelme S; Sáez-Carrillo K; Becerra J; Pérez C; Bustos E; Isaias RMS
    J Plant Res; 2019 Jul; 132(4):509-520. PubMed ID: 31250145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative transcriptome analysis of galls from four different host plants suggests the molecular mechanism of gall development.
    Takeda S; Yoza M; Amano T; Ohshima I; Hirano T; Sato MH; Sakamoto T; Kimura S
    PLoS One; 2019; 14(10):e0223686. PubMed ID: 31647845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronism between Aspidosperma macrocarpon (Apocynaceae) resources allocation and the establishment of the gall inducer Pseudophacopteron sp. (Hemiptera: Psylloidea).
    Castro AC; Oliveira DC; Moreira AS; lsaias RM
    Rev Biol Trop; 2013 Dec; 61(4):1891-900. PubMed ID: 24432541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in clonal poplar leaf chemistry caused by stem galls alter herbivory and leaf litter decomposition.
    Künkler N; Brandl R; Brändle M
    PLoS One; 2013; 8(11):e79994. PubMed ID: 24260333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cynipid galls on oak leaves are resilient to leaf vein disruption.
    Giertych MJ; Łukowski A; Karolewski P
    J Plant Res; 2023 Jul; 136(4):527-534. PubMed ID: 37133571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gall induction may benefit host plant: a case of a gall wasp and eucalyptus tree.
    Rocha S; Branco M; Boas LV; Almeida MH; Protasov A; Mendel Z
    Tree Physiol; 2013 Apr; 33(4):388-97. PubMed ID: 23513035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Woody stem galls interact with foliage to affect community associations.
    Cooper WR; Rieske LK
    Environ Entomol; 2009 Apr; 38(2):417-24. PubMed ID: 19389291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulation of food resources by a gall-forming aphid: the physiology of sink-source interactions.
    Larson KC; Whitham TG
    Oecologia; 1991 Sep; 88(1):15-21. PubMed ID: 28312726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.