These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 28308191)

  • 1. Morphotype community structure of ectomycorrhizas on Douglas fir (Pseudotsuga menziesii Mirb. Franco) seedlings grown under elevated atmospheric CO
    Rygiewicz PT; Martin KJ; Tuininga AR
    Oecologia; 2000 Aug; 124(2):299-308. PubMed ID: 28308191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Foliar nitrogen concentrations and natural abundance of (15)N suggest nitrogen allocation patterns of Douglas-fir and mycorrhizal fungi during development in elevated carbon dioxide concentration and temperature.
    Hobbie EA; Olszyk DM; Rygiewicz PT; Tingey DT; Johnson MG
    Tree Physiol; 2001 Sep; 21(15):1113-22. PubMed ID: 11581018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemistry and long-term decomposition of roots of Douglas-fir grown under elevated atmospheric carbon dioxide and warming conditions.
    Chen H; Rygiewicz PT; Johnson MG; Harmon ME; Tian H; Tang JW
    J Environ Qual; 2008; 37(4):1327-36. PubMed ID: 18574162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon-sink stimulation of photosynthesis in Douglas fir seedlings by some ectomycorrhizas.
    Dosskey MG; Linderman RG; Boersma L
    New Phytol; 1990 Jun; 115(2):269-274. PubMed ID: 33873954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supply and demand processes as controls over needle monoterpene synthesis and concentration in Douglas fir [Pseudotsuga menziesii (Mirb.) Franco].
    Litvak ME; Constable JV; Monson RK
    Oecologia; 2002 Aug; 132(3):382-391. PubMed ID: 28547416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology and Stomatal Function of Douglas Fir Needles Exposed to Climate Change: Elevated CO2 and Temperature.
    Apple ME; Olszyk DM; Ormrod DP; Lewis J; Southworth D; Tingey DT
    Int J Plant Sci; 2000 Jan; 161(1):127-132. PubMed ID: 10648202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of elevated CO(2) and temperature on cold hardiness and spring bud burst and growth in Douglas-fir (Pseudotsuga menziesii).
    Guak S; Olsyzk DM; Fuchigami LH; Tingey DT
    Tree Physiol; 1998 Oct; 18(10):671-679. PubMed ID: 12651417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal patterns of photosynthetic light response in Douglas-fir seedlings subjected to elevated atmospheric CO(2) and temperature.
    Lewis JD; Olszyk D; Tingey DT
    Tree Physiol; 1999 Apr; 19(4_5):243-252. PubMed ID: 12651567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does soil CO2 efflux acclimatize to elevated temperature and CO2 during long-term treatment of Douglas-fir seedlings?
    Tingey DT; Lee EH; Waschmann R; Johnson MG; Rygiewicz PT
    New Phytol; 2006; 170(1):107-18. PubMed ID: 16539608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Root hydraulic conductivity and xylem sap levels of zeatin riboside and abscisic acid in ectomycorrhizal Douglas fir seedlings.
    Coleman MD; Bledsoe CS; Smit BA
    New Phytol; 1990 Jun; 115(2):275-284. PubMed ID: 33873951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Root growth and water use efficiency of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and lodgepole pine (Pinus contorta Dougl.) seedlings.
    Smit J; Van Den Driessche R
    Tree Physiol; 1992 Dec; 11(4):401-10. PubMed ID: 14969945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elevated temperature differently affects foliar nitrogen partitioning in seedlings of diverse Douglas fir provenances.
    Du B; Jansen K; Junker LV; Eiblmeier M; Kreuzwieser J; Gessler A; Ensminger I; Rennenberg H
    Tree Physiol; 2014 Oct; 34(10):1090-101. PubMed ID: 25240727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monoterpene levels in needles of Douglas fir exposed to elevated CO2 and temperature.
    Snow MD; Bard RR; Olszyk DM; Minster LM; Hager AN; Tingey DT
    Physiol Plant; 2003 Mar; 117(3):352-358. PubMed ID: 12654035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of growth medium, nutrients, water, and aeration on mycorrhization and biomass allocation of greenhouse-grown interior Douglas-fir seedlings.
    Kazantseva O; Bingham M; Simard SW; Berch SM
    Mycorrhiza; 2009 Nov; 20(1):51-66. PubMed ID: 19572155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elevated CO(2) and elevated temperature have no effect on Douglas-fir fine-root dynamics in nitrogen-poor soil.
    Johnson MG; Rygiewicz PT; Tingey DT; Phillips DL
    New Phytol; 2006; 170(2):345-56. PubMed ID: 16608459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forest stand productivity derived from site conditions: an assessment of old Douglas-fir stands (
    Eckhart T; Pötzelsberger E; Koeck R; Thom D; Lair GJ; van Loo M; Hasenauer H
    Ann For Sci; 2019; 76(1):19. PubMed ID: 30881192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of the ectomycorrhizal fungus Rhizopogon subareolatus on growth and nutrient element localisation in two varieties of Douglas fir (Pseudotsuga menziesii var. menziesii and var. glauca) in response to manganese stress.
    Dučić T; Parladé J; Polle A
    Mycorrhiza; 2008 Jul; 18(5):227-239. PubMed ID: 18437431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shifts in Ectomycorrhizal Fungal Communities and Exploration Types Relate to the Environment and Fine-Root Traits Across Interior Douglas-Fir Forests of Western Canada.
    Defrenne CE; Philpott TJ; Guichon SHA; Roach WJ; Pickles BJ; Simard SW
    Front Plant Sci; 2019; 10():643. PubMed ID: 31191571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of short-term ozone exposure on the carbon economy of mature and juvenile Douglas firs [Pseudotsuga menziesii (Mirb.) Franco].
    Smeulders SM; Gorissen A; Joosten NN; VAN Veen JA
    New Phytol; 1995 Jan; 129(1):45-53. PubMed ID: 33874420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought.
    Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT
    Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.