BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 28308212)

  • 1. Reciprocal interactions between Scots pine and soil food web structure in the presence and absence of ectomycorrhiza.
    Setälä H
    Oecologia; 2000 Oct; 125(1):109-118. PubMed ID: 28308212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Urban polluted forest soils induce elevated root peroxidase activity in Scots pine (Pinus sylvestris L.) seedlings.
    Markkol AM; Tarvainen O; Ahonen-Jonnarth U; Strömmer R
    Environ Pollut; 2002; 116(2):273-8. PubMed ID: 11806455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of raw humus under two adult Scots pine stands on ectomycorrhization, nutritional status, nitrogen uptake, phosphorus uptake and growth of Pinus sylvestris seedlings.
    Schulz H; Schäfer T; Storbeck V; Härtling S; Rudloff R; Köck M; Buscot F
    Tree Physiol; 2012 Jan; 32(1):36-48. PubMed ID: 22184278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimates of fungal biomass in Scots pine stands on an urban pollution gradient.
    Markkola AM; Ohtonen R; Tarvainen O; Ahonen-Jonnarth U
    New Phytol; 1995 Sep; 131(1):139-147. PubMed ID: 33863163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heritable genetic variation but no local adaptation in a pine-ectomycorrhizal interaction.
    Downie J; Silvertown J; Cavers S; Ennos R
    Mycorrhiza; 2020 May; 30(2-3):185-195. PubMed ID: 32078050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ectomycorrhizal responses to organic and inorganic nitrogen sources when associating with two host species.
    Avolio ML; Tuininga AR; Lewis JD; Marchese M
    Mycol Res; 2009 Aug; 113(Pt 8):897-907. PubMed ID: 19465124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arbuscular mycorrhiza and Collembola interact in affecting community composition of saprotrophic microfungi.
    Tiunov AV; Scheu S
    Oecologia; 2005 Feb; 142(4):636-42. PubMed ID: 15619097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal changes in root and soil respiration of ozone-exposed ponderosa pine (Pinus ponderosa) grown in different substrates.
    Scagel CF; Andersen CP
    New Phytol; 1997 Aug; 136(4):627-643. PubMed ID: 33863111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Population- and ecosystem-level effects of predation on microbial-feeding nematodes.
    Laakso J; Setälä H
    Oecologia; 1999 Aug; 120(2):279-286. PubMed ID: 28308090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mycorrhizal fungi and roots are complementary in foraging within nutrient patches.
    Cheng L; Chen W; Adams TS; Wei X; Li L; McCormack ML; DeForest JL; Koide RT; Eissenstat DM
    Ecology; 2016 Oct; 97(10):2815-2823. PubMed ID: 27859112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-term phosphorus uptake rates in mycorrhizal and non-mycorrhizal roots of intact Pinus sylvestris seedlings.
    Colpaert JV; VAN Tichelen KK; VAN Assche JA; VAN Laere A
    New Phytol; 1999 Sep; 143(3):589-597. PubMed ID: 33862896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial activities related to C and N cycling and microbial community structure in the rhizospheres of Pinus sylvestris, Picea abies and Betula pendula seedlings in an organic and mineral soil.
    Priha O; Grayston SJ; Pennanen T; Smolander A
    FEMS Microbiol Ecol; 1999 Oct; 30(2):187-199. PubMed ID: 10508943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi.
    Setälä H; McLean MA
    Oecologia; 2004 Mar; 139(1):98-107. PubMed ID: 14740289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ectomycorrhizal root tips in relation to site and stand characteristics in Norway spruce and Scots pine stands in boreal forests.
    Helmisaari HS; Ostonen I; Lõhmus K; Derome J; Lindroos AJ; Merilä P; Nöjd P
    Tree Physiol; 2009 Mar; 29(3):445-56. PubMed ID: 19203968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest.
    Hasselquist NJ; Metcalfe DB; Inselsbacher E; Stangl Z; Oren R; Näsholm T; Högberg P
    Ecology; 2016 Apr; 97(4):1012-22. PubMed ID: 27220217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneity of fungal and plant enzyme expression in intact Scots pine-Suillus bovinus and -Paxillus involutus mycorrhizospheres developed in natural forest humus.
    Timonen S; Sen R
    New Phytol; 1998 Feb; 138(2):355-366. PubMed ID: 33863091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Location, but not defensive genotype, determines ectomycorrhizal community composition in Scots pine (
    Downie J; Taylor AFS; Iason G; Moore B; Silvertown J; Cavers S; Ennos R
    Ecol Evol; 2021 May; 11(9):4826-4842. PubMed ID: 33976851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frost hardiness of mycorrhizal and non-mycorrhizal Scots pine under two fertilization treatments.
    Korhonen A; Lehto T; Repo T
    Mycorrhiza; 2015 Jul; 25(5):377-86. PubMed ID: 25404213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of soil and air temperature on CO2 exchange and net biomass accumulation in Norway spruce, Scots pine and silver birch seedlings.
    Pumpanen J; Heinonsalo J; Rasilo T; Villemot J; Ilvesniemi H
    Tree Physiol; 2012 Jun; 32(6):724-36. PubMed ID: 22345325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of soil mite communities (Acari: Oribatida, Mesostigmata) to elemental composition of mosses and pine needles and long-term air pollution in Scots pine (Pinus sylvestris L.) stands.
    Wierzbicka A; Dyderski MK; Kamczyc J; Rączka G; Jagodziński AM
    Sci Total Environ; 2019 Nov; 691():284-295. PubMed ID: 31323574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.