BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 28308419)

  • 1. A hypothesis on the evolution of isoprenoid emission by oaks based on the correlation between emission type and Quercus taxonomy.
    Loreto F; Ciccioli P; Brancaleoni E; Valentini R; De Lillis M; Csiky O; Seufert G
    Oecologia; 1998 Jul; 115(3):302-305. PubMed ID: 28308419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isoprenoid emissions of Quercus spp. (Q. suber and Q. ilex) in mixed stands contrasting in interspecific genetic introgression.
    Staudt M; Mir C; Joffre R; Rambal S; Bonin A; Landais D; Lumaret R
    New Phytol; 2004 Sep; 163(3):573-584. PubMed ID: 33873752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The diversification of terpene emissions in Mediterranean oaks: lessons from a study of Quercus suber, Quercus canariensis and its hybrid Quercus afares.
    Welter S; Bracho-Nuñez A; Mir C; Zimmer I; Kesselmeier J; Lumaret R; Schnitzler JP; Staudt M
    Tree Physiol; 2012 Sep; 32(9):1082-91. PubMed ID: 22848089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why only some plants emit isoprene.
    Monson RK; Jones RT; Rosenstiel TN; Schnitzler JP
    Plant Cell Environ; 2013 Mar; 36(3):503-16. PubMed ID: 22998549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inter- and intra-specific variability in isoprene production and photosynthesis of Central European oak species.
    Steinbrecher R; Contran N; Gugerli F; Schnitzler JP; Zimmer I; Menard T; Günthardt-Goerg MS
    Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():148-56. PubMed ID: 23279295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutrient-rich plants emit a less intense blend of volatile isoprenoids.
    Fernández-Martínez M; Llusià J; Filella I; Niinemets Ü; Arneth A; Wright IJ; Loreto F; Peñuelas J
    New Phytol; 2018 Nov; 220(3):773-784. PubMed ID: 29120052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaf isoprene and monoterpene emission distribution across hyperdominant tree genera in the Amazon basin.
    Jardine KJ; Zorzanelli RF; Gimenez BO; Oliveira Piva LR; Teixeira A; Fontes CG; Robles E; Higuchi N; Chambers JQ; Martin ST
    Phytochemistry; 2020 Jul; 175():112366. PubMed ID: 32278887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular evolution of the internal transcribed spacers in red oaks (Quercus sect. Lobatae).
    Vázquez ML
    Comput Biol Chem; 2019 Dec; 83():107117. PubMed ID: 31581032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unravelling spatiotemporal tree-ring signals in Mediterranean oaks: a variance-covariance modelling approach of carbon and oxygen isotope ratios.
    Shestakova TA; Aguilera M; Ferrio JP; Gutiérrez E; Voltas J
    Tree Physiol; 2014 Aug; 34(8):819-38. PubMed ID: 24870366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dimethylallyl diphosphate and geranyl diphosphate pools of plant species characterized by different isoprenoid emissions.
    Nogués I; Brilli F; Loreto F
    Plant Physiol; 2006 Jun; 141(2):721-30. PubMed ID: 16461390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High variability of chloroplast DNA in three Mediterranean evergreen oaks indicates complex evolutionary history.
    Jiménez P; de Heredia UL; Collada C; Lorenzo Z; Gil L
    Heredity (Edinb); 2004 Nov; 93(5):510-5. PubMed ID: 15329661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Framework Phylogeny, Evolution and Complex Diversification of Chinese Oaks.
    Yang J; Guo YF; Chen XD; Zhang X; Ju MM; Bai GQ; Liu ZL; Zhao GF
    Plants (Basel); 2020 Aug; 9(8):. PubMed ID: 32823635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A genetic legacy of introgression confounds phylogeny and biogeography in oaks.
    McVay JD; Hipp AL; Manos PS
    Proc Biol Sci; 2017 May; 284(1854):. PubMed ID: 28515204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrasting patterns of historical colonization in white oaks (Quercus spp.) in California and Europe.
    Grivet D; Deguilloux MF; Petit RJ; Sork VL
    Mol Ecol; 2006 Nov; 15(13):4085-93. PubMed ID: 17054504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oaks: an evolutionary success story.
    Kremer A; Hipp AL
    New Phytol; 2020 May; 226(4):987-1011. PubMed ID: 31630400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants.
    Fares S; Loreto F; Kleist E; Wildt J
    Plant Biol (Stuttg); 2008 Jan; 10(1):44-54. PubMed ID: 17538866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural hybridisation between kermes (Quercus coccifera L.) and holm oaks (Q. ilex L.) revealed by microsatellite markers.
    Ortego J; Bonal R
    Plant Biol (Stuttg); 2010 Jan; 12(1):234-8. PubMed ID: 20653907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Between-tree variations in leaf δ
    Damesin C; Rambal S; Joffre R
    Oecologia; 1997 Jun; 111(1):26-35. PubMed ID: 28307502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conservation biogeography of red oaks (Quercus, section Lobatae) in Mexico and Central America.
    Torres-Miranda A; Luna-Vega I; Oyama K
    Am J Bot; 2011 Feb; 98(2):290-305. PubMed ID: 21613118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of hybrids in nature: application to oaks (Quercus suber and Q. ilex).
    Burgarella C; Lorenzo Z; Jabbour-Zahab R; Lumaret R; Guichoux E; Petit RJ; Soto A; Gil L
    Heredity (Edinb); 2009 May; 102(5):442-52. PubMed ID: 19240752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.