These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 28308700)
1. The effect of temperature on the development of egg, naupliar and copepodite stages of two species of copepods, Cyclops vicinus uljanin and Eudiaptomus gracilis sars. Munro IG Oecologia; 1974 Dec; 16(4):355-367. PubMed ID: 28308700 [TBL] [Abstract][Full Text] [Related]
2. The Use of Winter Water Temperature and Food Composition by the Copepod Choi JY; Kim SK Biology (Basel); 2021 May; 10(5):. PubMed ID: 34062893 [TBL] [Abstract][Full Text] [Related]
3. Factors affecting abundance of Triaenophorus infection in Cyclops strenuus, and parasite-induced changes in host fitness. Pasternak AF; Pulkkinen K; Mikheev VN; Hasu T; Valtonen ET Int J Parasitol; 1999 Nov; 29(11):1793-801. PubMed ID: 10616925 [TBL] [Abstract][Full Text] [Related]
4. The effects of food stoichiometry and temperature on copepods are mediated by ontogeny. Mathews L; Faithfull CL; Lenz PH; Nelson CE Oecologia; 2018 Sep; 188(1):75-84. PubMed ID: 29948318 [TBL] [Abstract][Full Text] [Related]
5. Influence of temperature on swimming performance and respiration rate of the cold-water cyclopoid copepod Cyclops vicinus. Svetlichny L; Obertegger U J Therm Biol; 2022 Oct; 109():103320. PubMed ID: 36195388 [TBL] [Abstract][Full Text] [Related]
6. Mating frequency and interspecific matings in some freshwater cyclopoid copepods. Maier G Oecologia; 1995 Feb; 101(2):245-250. PubMed ID: 28306797 [TBL] [Abstract][Full Text] [Related]
7. Risk assessment of the National Institute of Standards and Technology petroleum crude oil standard water accommodated fraction: further application of a copepod-based, full life-cycle bioassay. Bejarano AC; Chandler GT; He L; Cary TL; Ferry JL Environ Toxicol Chem; 2006 Jul; 25(7):1953-60. PubMed ID: 16833160 [TBL] [Abstract][Full Text] [Related]
8. Small copepods of the deep South Adriatic Pit: diversity, seasonal and multi-annual dynamics, and implications from the regional hydrography. Kršinić F; Böttger-Schnack R; Vidjak O Environ Monit Assess; 2020 Jul; 192(8):545. PubMed ID: 32719996 [TBL] [Abstract][Full Text] [Related]
9. Metabolic responses to temperature change in a tropical freshwater copepod (Mesocyclops brasilianus) and their adaptive significance. Epp RW; Lewis WM Oecologia; 1979 Sep; 42(2):123-138. PubMed ID: 28309656 [TBL] [Abstract][Full Text] [Related]
10. Coupling of the biochemical composition and calorific content of zooplankters with the Microcystis aeruginosa proliferation in a highly eutrophic reservoir. Aleya L; Michard M; Khattabi H; Devaux J Environ Technol; 2006 Nov; 27(11):1181-90. PubMed ID: 17203599 [TBL] [Abstract][Full Text] [Related]
11. Egg predation by copepods in Daphnia brood cavities. Gliwicz ZM; Stibor H Oecologia; 1993 Aug; 95(2):295-298. PubMed ID: 28312955 [TBL] [Abstract][Full Text] [Related]
12. Life-cycle of Bothriocephalus claviceps, a specific parasite of eels. Scholz T J Helminthol; 1997 Sep; 71(3):241-8. PubMed ID: 9271472 [TBL] [Abstract][Full Text] [Related]
13. A new protocol for ecotoxicological assessment of seawater using nauplii of Tisbe biminiensis (Copepoda:Harpacticoida). Lavorante BR; Oliveira DD; Costa BV; Souza-Santos LP Ecotoxicol Environ Saf; 2013 Sep; 95():52-9. PubMed ID: 23769123 [TBL] [Abstract][Full Text] [Related]
15. Density-dependent effects of Anguillicola crassus (Nematoda) within and on its copepod intermediate hosts. Ashworth ST; Kennedy CR; Blanc G Parasitology; 1996 Sep; 113 ( Pt 3)():303-9. PubMed ID: 8811853 [TBL] [Abstract][Full Text] [Related]
16. Planktonic Copepods in a Sub-Tropical Estuary: Seasonal Patterns in the Abundance of Adults, Copepodites, Nauplii, and Eggs in the Sea Bed. Marcus NH Biol Bull; 1991 Oct; 181(2):269-274. PubMed ID: 29304647 [TBL] [Abstract][Full Text] [Related]
17. A synthesis of growth rates in marine epipelagic invertebrate zooplankton. Hirst AG; Roff JC; Lampitt RS Adv Mar Biol; 2003; 44():1-142. PubMed ID: 12846041 [TBL] [Abstract][Full Text] [Related]
18. Container volume may affect growth rates of ciliates and clearance rates of their microcrustacean predators in microcosm experiments. Weisse T; Lukić D; Lu X J Plankton Res; 2021; 43(2):288-299. PubMed ID: 33814976 [TBL] [Abstract][Full Text] [Related]
19. Changes in free amino acid content during naupliar development of the Calanoid copepod Acartia tonsa. Rayner TA; Jørgensen NOG; Drillet G; Hansen BW Comp Biochem Physiol A Mol Integr Physiol; 2017 Aug; 210():1-6. PubMed ID: 28483512 [TBL] [Abstract][Full Text] [Related]
20. Developmental stage-specific life-cycle bioassay for assessment of sediment-associated toxicant effects on benthic copepod production. Chandler GT; Green AS Environ Toxicol Chem; 2001 Jan; 20(1):171-8. PubMed ID: 11351405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]