BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 28308771)

  • 1. Models of metamorphic timing: an experimental evaluation with the pond-dwelling salamander Hemidactylium scutatum (Caudata: Plethodontidae).
    O'Laughlin BE; Harris RN
    Oecologia; 2000 Aug; 124(3):343-350. PubMed ID: 28308771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tail development and regeneration throughout the life cycle of the four-toed salamander Hemidactylium scutatum.
    Vaglia JL; Babcock SK; Harris RN
    J Morphol; 1997 Jul; 233(1):15-29. PubMed ID: 29852614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of changes in resource level on age and size at metamorphosis in Hyla squirella.
    Beck CW
    Oecologia; 1997 Oct; 112(2):187-192. PubMed ID: 28307569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interacting effects of predation risk and food availability on larval anuran behaviour and development.
    Nicieza AG
    Oecologia; 2000 Jun; 123(4):497-505. PubMed ID: 28308758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caudal vertebral development and morphology in three salamanders with complex life cycles (Ambystoma jeffersonianum, Hemidactylium scutatum, and Desmognathus ocoee).
    Babcock SK; Blais JL
    J Morphol; 2001 Feb; 247(2):142-59. PubMed ID: 11223925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex Life Cycles in a Variable Environment: Predicting When the Timing of Metamorphosis Shifts from Resource Dependent to Developmentally Fixed.
    Hentschel BT
    Am Nat; 1999 Nov; 154(5):549-558. PubMed ID: 10561127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HABITAT DURATION, LENGTH OF LARVAL PERIOD, AND THE EVOLUTION OF A COMPLEX LIFE CYCLE OF A SALAMANDER, AMBYSTOMA TEXANUM.
    Petranka JW; Sih A
    Evolution; 1987 Nov; 41(6):1347-1356. PubMed ID: 28563608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecological constraints on amphibian metamorphosis: interactions of temperature and larval density with responses to changing food level.
    Newman RA
    Oecologia; 1998 Jun; 115(1-2):9-16. PubMed ID: 28308472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Larval growth rate and sex determine resource allocation and stress responsiveness across life stages in juvenile frogs.
    Warne RW; Crespi EJ
    J Exp Zool A Ecol Genet Physiol; 2015 Mar; 323(3):191-201. PubMed ID: 25676342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental dynamics of Ambystoma tigrinum in a changing landscape.
    McMenamin SK; Hadly EA
    BMC Ecol; 2010 Apr; 10():10. PubMed ID: 20361876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inducible offences affect predator-prey interactions and life-history plasticity in both predators and prey.
    Kishida O; Costa Z; Tezuka A; Michimae H
    J Anim Ecol; 2014 Jul; 83(4):899-906. PubMed ID: 24320092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Food Restrictions Affect the Larval Metamorphosis and Early Juvenile Performance in a Neotropical Mangrove Fiddler Crab (
    De Souza AS; Do Rosário TN; De Brito Simith DJ; Abrunhosa FA
    Biol Bull; 2019 Jun; 236(3):186-198. PubMed ID: 31167091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential predator effects across three life stages of the African tree frog, Hyperolius spinigularis.
    Vonesh JR
    Oecologia; 2005 Mar; 143(2):280-90. PubMed ID: 15657758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exogenous stress hormones alter energetic and nutrient costs of development and metamorphosis.
    Kirschman LJ; McCue MD; Boyles JG; Warne RW
    J Exp Biol; 2017 Sep; 220(Pt 18):3391-3397. PubMed ID: 28729344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Normal table of embryonic development in the four-toed salamander, Hemidactylium scutatum.
    Hurney CA; Babcock SK; Shook DR; Pelletier TM; Turner SD; Maturo J; Cogbill S; Snow MC; Kinch K
    Mech Dev; 2015 May; 136():99-110. PubMed ID: 25617760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental Plasticity in Anurans: Meta-analysis Reveals Effects of Larval Environments on Size at Metamorphosis And Timing of Metamorphosis.
    Albecker MA; Strobel SM; Womack MC
    Integr Comp Biol; 2023 Sep; 63(3):714-729. PubMed ID: 37279893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Warmer temperature and provision of natural substrate enable earlier metamorphosis in the critically endangered Baw Baw frog.
    Gilbert DJ; Magrath MJL; Byrne PG
    Conserv Physiol; 2020; 8(1):coaa030. PubMed ID: 32577286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecological Aspects of Amphibian Metamorphosis: Nonnormal distributions of competitive ability reflect selection for facultative metamorphosis.
    Wilbur HM; Collins JP
    Science; 1973 Dec; 182(4119):1305-14. PubMed ID: 17733097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary selenomethionine exposure induces physical malformations and decreases growth and survival to metamorphosis in an amphibian (Hyla chrysoscelis).
    Lockard L; Rowe CL; Heyes A
    Arch Environ Contam Toxicol; 2013 Apr; 64(3):504-13. PubMed ID: 23229196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predation risk and competition effects on the life-history characteristics of larval Oregon spotted frog and larval red-legged frog.
    Barnett HK; Richardson JS
    Oecologia; 2002 Aug; 132(3):436-444. PubMed ID: 28547422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.