These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28308771)

  • 41. Concentrations of insulin and thyroid hormones in the serum of landlocked sea lampreys (Petromyzon marinus) of three larval year classes, in larvae exposed to two temperature regimes, and in individuals during and after metamorphosis.
    Youson JH; Plisetskaya EM; Leatherland JF
    Gen Comp Endocrinol; 1994 Jun; 94(3):294-304. PubMed ID: 7926638
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Developmental Stage Affects the Consequences of Transient Salinity Exposure in Toad Tadpoles.
    Welch AM; Bralley JP; Reining AQ; Infante AM
    Integr Comp Biol; 2019 Oct; 59(4):1114-1127. PubMed ID: 31225593
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Correlated evolution of phenotypic plasticity in metamorphic timing.
    Michimae H; Emura T
    J Evol Biol; 2012 Jul; 25(7):1331-9. PubMed ID: 22530725
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Salamander paedomorphosis: linking thyroid hormone to life history and life cycle evolution.
    Johnson CK; Voss SR
    Curr Top Dev Biol; 2013; 103():229-58. PubMed ID: 23347521
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metamorphosis in the summer flounder (Paralichthys dentatus): stage-specific developmental response to altered thyroid status.
    Schreiber AM; Specker JL
    Gen Comp Endocrinol; 1998 Aug; 111(2):156-66. PubMed ID: 9679087
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of larval age on morphology and gene expression during ascidian metamorphosis.
    Jacobs MW; Degnan SM; Woods R; Williams E; Roper KE; Green K; Degnan BM
    Integr Comp Biol; 2006 Dec; 46(6):760-76. PubMed ID: 21672783
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Alteration of larval development and metamorphosis by nitrate and perchlorate in southern leopard frogs (Rana sphenocephala).
    Ortiz-Santaliestra ME; Sparling DW
    Arch Environ Contam Toxicol; 2007 Nov; 53(4):639-46. PubMed ID: 17657452
    [TBL] [Abstract][Full Text] [Related]  

  • 48. How Metamorphosis Is Different in Plethodontids: Larval Life History Perspectives on Life-Cycle Evolution.
    Beachy CK; Ryan TJ; Bonett RM
    Herpetologica; 2017; 73(3):252-258. PubMed ID: 29269959
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metabolic costs of altered growth trajectories across life transitions in amphibians.
    Burraco P; Valdés AE; Orizaola G
    J Anim Ecol; 2020 Mar; 89(3):855-866. PubMed ID: 31693168
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Developmental environment has lasting effects on amphibian post-metamorphic behavior and thermal physiology.
    Ohmer MEB; Hammond TT; Switzer S; Wantman T; Bednark JG; Paciotta E; Coscia J; Richards-Zawacki CL
    J Exp Biol; 2023 May; 226(9):. PubMed ID: 37039737
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intraspecific developmental variation in the life cycle of the Andean Treefrog (Boana riojana): A temporal analysis.
    Goldberg J; Quinzio SI; Cruz JC; Fabrezi M
    J Morphol; 2019 Apr; 280(4):480-493. PubMed ID: 30847955
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Appendage regeneration in anamniotes utilizes genes active during larval-metamorphic stages that have been lost or altered in amniotes: The case for studying lizard tail regeneration.
    Alibardi L
    J Morphol; 2020 Nov; 281(11):1358-1381. PubMed ID: 32865265
    [TBL] [Abstract][Full Text] [Related]  

  • 53. EVOLUTIONARY LOSS OF LARVAL FEEDING: DEVELOPMENT, FORM AND FUNCTION IN A FACULTATIVELY FEEDING LARVA, BRISASTER LATIFRONS.
    Hart MW
    Evolution; 1996 Feb; 50(1):174-187. PubMed ID: 28568851
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Larval Environment Alters Amphibian Immune Defenses Differentially across Life Stages and Populations.
    Krynak KL; Burke DJ; Benard MF
    PLoS One; 2015; 10(6):e0130383. PubMed ID: 26107644
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differential patterns of accumulation and retention of dietary trace elements associated with coal ash during larval development and metamorphosis of an amphibian.
    Heyes A; Rowe CL; Conrad P
    Arch Environ Contam Toxicol; 2014 Jan; 66(1):78-85. PubMed ID: 24169791
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Larval feeding duration affects ecdysteroid levels and nutritional reserves regulating pupal commitment in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae).
    Telang A; Frame L; Brown MR
    J Exp Biol; 2007 Mar; 210(Pt 5):854-64. PubMed ID: 17297145
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Impacts of hydroperiod on growth and survival of larval amphibians in temporary ponds of Central Pennsylvania, USA.
    Rowe CL; Dunson WA
    Oecologia; 1995 Jun; 102(4):397-403. PubMed ID: 28306882
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Larval and metamorphic development of the foregut and proboscis in the caenogastropod Marsenina (Lamellaria) stearnsii.
    Page LR
    J Morphol; 2002 May; 252(2):202-17. PubMed ID: 11921045
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Patterns of serotonin and SCP immunoreactivity during metamorphosis of the nervous system of the red abalone, Haliotis rufescens.
    Barlow LA; Truman JW
    J Neurobiol; 1992 Sep; 23(7):829-44. PubMed ID: 1431847
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The hyal and ventral branchial muscles in caecilian and salamander larvae: homologies and evolution.
    Kleinteich T; Haas A
    J Morphol; 2011 May; 272(5):598-613. PubMed ID: 21374703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.