These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
61 related articles for article (PubMed ID: 28309199)
1. Some consequences for a parasitic herbivore, the milkweed longhorn beetle, Tetraopes tetrophthalmus, of a host-plant shift from Asdepias syriaca to A. verticillata. Price PW; Willson MF Oecologia; 1976 Dec; 25(4):331-340. PubMed ID: 28309199 [TBL] [Abstract][Full Text] [Related]
2. Evolution of specialization: a phylogenetic study of host range in the red milkweed beetle (Tetraopes tetraophthalmus). Rasmann S; Agrawal AA Am Nat; 2011 Jun; 177(6):728-37. PubMed ID: 21597250 [TBL] [Abstract][Full Text] [Related]
3. Functional and evolutionary insights into chemosensation and specialized herbivory from the genome of the red milkweed beetle, Tetraopes tetrophthalmus (Cerambycidae: Lamiinae). Adams R; Sylvester T; Mitchell RF; Price MA; Shen R; McKenna DD J Hered; 2024 Aug; ():. PubMed ID: 39212260 [TBL] [Abstract][Full Text] [Related]
4. Tissue-specific plant toxins and adaptation in a specialist root herbivore. Agrawal AA; Hastings AP Proc Natl Acad Sci U S A; 2023 May; 120(22):e2302251120. PubMed ID: 37216531 [TBL] [Abstract][Full Text] [Related]
5. THE EFFECT OF HOST PLANT PATCH SIZE VARIATION ON THE POPULATION STRUCTURE OF A SPECIALIST HERBIVORE INSECT, TETRAOPES TETRAOPHTHALMUS. McCauley DE Evolution; 1991 Nov; 45(7):1675-1684. PubMed ID: 28564142 [TBL] [Abstract][Full Text] [Related]
6. Limited dispersal and its effect on population structure in the milkweed beetle Tetraopes tetraophthalmus. McCauley DE; Ott JR; Stine A; McGrath S Oecologia; 1981 Oct; 51(1):145-150. PubMed ID: 28310321 [TBL] [Abstract][Full Text] [Related]
7. Interpatch movement of the red milkweed beetle, Tetraopes tetraophthalmus: individual responses to patch size and isolation. Matter SF Oecologia; 1996 Mar; 105(4):447-453. PubMed ID: 28307137 [TBL] [Abstract][Full Text] [Related]
8. Population density and area: the role of between- and within-patch processes. Matter SF Oecologia; 1997 May; 110(4):533-538. PubMed ID: 28307246 [TBL] [Abstract][Full Text] [Related]
9. Evolutionary assembly of the milkweed fauna: cytochrome oxidase I and the age of Tetraopes beetles. Farrell BD Mol Phylogenet Evol; 2001 Mar; 18(3):467-78. PubMed ID: 11277638 [TBL] [Abstract][Full Text] [Related]
10. Changes in landscape structure decrease mortality during migration. Matter SF Oecologia; 2006 Nov; 150(1):8-16. PubMed ID: 16858584 [TBL] [Abstract][Full Text] [Related]
11. Phylogenomics of Tetraopes longhorn beetles unravels their evolutionary history and biogeographic origins. Gutiérrez-Trejo N; Van Dam MH; Lam AW; Martínez-Herrera G; Noguera FA; Weissling T; Ware JL; Toledo-Hernández VH; Skillman FW; Farrell BD; Pérez-Flores O; Prendini L; Carpenter JM Sci Rep; 2024 Mar; 14(1):7285. PubMed ID: 38538660 [TBL] [Abstract][Full Text] [Related]
12. An energetic analysis of host plant selection by the large milkweed bug, Oncopeltus fasciatus. Chaplin SJ Oecologia; 1980 Jan; 46(2):254-261. PubMed ID: 28309681 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of synthetic hydrocarbons for mark-recapture studies on the red milkweed beetle. Ginzel MD; Hanks LM J Chem Ecol; 2002 May; 28(5):1037-43. PubMed ID: 12049225 [TBL] [Abstract][Full Text] [Related]
14. Host-associated fitness trade-offs do not limit the evolution of diet breadth in the small milkweed bug Lygaeus kalmii (Hemiptera: Lygaeidae). Fox CW; Caldwell RL Oecologia; 1994 Apr; 97(3):382-389. PubMed ID: 28313634 [TBL] [Abstract][Full Text] [Related]
15. The timing of heat waves has multiyear effects on milkweed and its insect community. Cope OL; Zehr LN; Agrawal AA; Wetzel WC Ecology; 2023 Apr; 104(4):e3988. PubMed ID: 36756764 [TBL] [Abstract][Full Text] [Related]
16. Natural food requirements of the large milkweed bug,Oncopeltus fasciatus (Hemiptera: Lygaeidae), and their relation to gregariousness and host plant morphology. Ralph CP Oecologia; 1976 Jun; 26(2):157-175. PubMed ID: 28309260 [TBL] [Abstract][Full Text] [Related]
17. The distribution of eggs per host in a herbivorous insect--intersection of oviposition, dispersal and population dynamics. Zu Dohna H J Anim Ecol; 2006 Mar; 75(2):387-98. PubMed ID: 16637992 [TBL] [Abstract][Full Text] [Related]
18. Experimental demography and the vital rates of generalist and specialist insect herbivores on native and novel host plants. García-Robledo C; Horvitz CC J Anim Ecol; 2011 Sep; 80(5):976-89. PubMed ID: 21534952 [TBL] [Abstract][Full Text] [Related]
19. Interactions between artificial light at night, soil moisture, and plant density affect the growth of a perennial wildflower. Hey MH; DiBiase E; Roach DA; Carr DE; Haynes KJ Oecologia; 2020 Jun; 193(2):503-510. PubMed ID: 32533357 [TBL] [Abstract][Full Text] [Related]
20. Elm leaves 'warned' by insect egg deposition reduce survival of hatching larvae by a shift in their quantitative leaf metabolite pattern. Austel N; Eilers EJ; Meiners T; Hilker M Plant Cell Environ; 2016 Feb; 39(2):366-76. PubMed ID: 26296819 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]