These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 2830942)

  • 21. The quantal nature of synaptic transmission at the neuromuscular junction of a spider.
    Brenner HR; Rathmayer W
    J Gen Physiol; 1973 Aug; 62(2):224-36. PubMed ID: 4352951
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calcium dependence of uni-quantal release latencies and quantal content at mouse neuromuscular junction.
    Samigullin D; Bukharaeva EA; Vyskocil F; Nikolsky EE
    Physiol Res; 2005; 54(1):129-132. PubMed ID: 15717851
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The correlation between vesicle loss and quantal secretion at the frog neuromuscular junction.
    Hurlbut WP
    Cell Biol Int Rep; 1989 Dec; 13(12):1053-62. PubMed ID: 2561463
    [No Abstract]   [Full Text] [Related]  

  • 24. [Contacts, network systems, synapses].
    Fernández de Molina A
    An R Acad Nac Med (Madr); 1997; 114(4):955-69; discussion 969-70. PubMed ID: 9616949
    [No Abstract]   [Full Text] [Related]  

  • 25. Quantal independence and uniformity of presynaptic release kinetics at the frog neuromuscular junction.
    Barrett EF; Stevens CF
    J Physiol; 1972 Dec; 227(3):665-89. PubMed ID: 4405552
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synaptic frequency demodulation.
    Lass Y; Landau EM
    Experientia; 1972 Sep; 28(9):1033-5. PubMed ID: 4353026
    [No Abstract]   [Full Text] [Related]  

  • 27. Mechanisms of the effect of 1,1-dimethyl-3-hydroxybutyl phosphonic acid derivatives on synaptic transmission in neuromuscular junction.
    Pryazhnikov EG; Skorinkin AI; Garaev RS; Giniatullin RA; Vizel AO; Shchukina LI
    Bull Exp Biol Med; 2005 Apr; 139(4):437-40. PubMed ID: 16027875
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Observations on the action of type A botulinum toxin on frog neuromuscular junctions.
    Boroff DA; del Castillo J; Evoy WH; Steinhardt RA
    J Physiol; 1974 Jul; 240(2):227-53. PubMed ID: 4371582
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Profiles of evoked release along the length of frog motor nerve terminals.
    D'Alonzo AJ; Grinnell AD
    J Physiol; 1985 Feb; 359():235-58. PubMed ID: 2860241
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect, number and location of synapses made by single pyramidal cells onto aspiny interneurones of cat visual cortex.
    Buhl EH; Tamás G; Szilágyi T; Stricker C; Paulsen O; Somogyi P
    J Physiol; 1997 May; 500 ( Pt 3)(Pt 3):689-713. PubMed ID: 9161986
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cholesterol and synaptic transmitter release at crayfish neuromuscular junctions.
    Zamir O; Charlton MP
    J Physiol; 2006 Feb; 571(Pt 1):83-99. PubMed ID: 16339182
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physiological regulation of synaptic effectiveness at frog neuromuscular junctions.
    Grinnell AD; Herrera AA
    J Physiol; 1980 Oct; 307():301-17. PubMed ID: 6259336
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Presynaptic effects of 4-aminopyridine and streptomycin on the neuromuscular junction.
    Enomoto K; Maeno T
    Eur J Pharmacol; 1981 Nov; 76(1):1-8. PubMed ID: 6274670
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The calcium dependence of spontaneous and evoked quantal release at the frog neuromuscular junction.
    Barton SB; Cohen IS; van der Kloot W
    J Physiol; 1983 Apr; 337():735-51. PubMed ID: 6603514
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Some properties of spontaneous excitatory junction potentials recorded from arterioles of guinea-pigs.
    Hirst GD; Neild TO
    J Physiol; 1980 Jun; 303():43-60. PubMed ID: 6253622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characteristics of transmitter release at regenerating frog neuromuscular junctions.
    Dennis MJ; Miledi R
    J Physiol; 1974 Jun; 239(3):571-94. PubMed ID: 4152807
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Depression of synaptic efficacy at intermolt in crayfish neuromuscular junctions by 20-hydroxyecdysone, a molting hormone.
    Cooper RL; Ruffner ME
    J Neurophysiol; 1998 Apr; 79(4):1931-41. PubMed ID: 9535959
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new model for transmitter mobilization in the frog neuromuscular junction.
    Lass Y; Halevi Y; Landau EM; Gitter S
    Pflugers Arch; 1973 Oct; 343(2):157-63. PubMed ID: 4359003
    [No Abstract]   [Full Text] [Related]  

  • 39. Maintained depolarization of synaptic terminals facilitates nerve-evoked transmitter release at a crayfish neuromuscular junction.
    Wojtowicz JM; Atwood HL
    J Neurobiol; 1983 Sep; 14(5):385-90. PubMed ID: 6137513
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes of quantal transmitter release caused by gadolinium ions at the frog neuromuscular junction.
    Molgó J; del Pozo E; Baños JE; Angaut-Petit D
    Br J Pharmacol; 1991 Sep; 104(1):133-8. PubMed ID: 1686201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.