BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 28309439)

  • 1. Responses of stomata to environmental factors-experiments with isolated epidermal strips of Polypodium vulgare : II. Leaf bulk water potential, air humidity, and temperature.
    Lösch R
    Oecologia; 1979 Jan; 39(2):229-238. PubMed ID: 28309439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of stomata to environmental factors-experiments with isolated epidermal strips of Polypodium vulgare : I. Temperature and Humidity.
    Lösch R
    Oecologia; 1977 Mar; 29(1):85-97. PubMed ID: 28308809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of stomata to changes in humidity.
    Lange OL; Lösch R; Schulze ED; Kappen L
    Planta; 1971 Mar; 100(1):76-86. PubMed ID: 24488104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of air humidity and temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions : III. The effect on water use efficiency.
    Schulze E-; Lange OL; Evenari M; Kappen L; Buschbom U
    Oecologia; 1975 Dec; 19(4):303-314. PubMed ID: 28309242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions : II. The significance of leaf water status and internal carbon dioxide concentration.
    Schulze E-; Lange OL; Kappen L; Evenari M; Buschbom U
    Oecologia; 1975 Sep; 18(3):219-233. PubMed ID: 28308679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental and physiological regulation of transpiration in tropical forest gap species: the influence of boundary layer and hydraulic properties.
    Meinzer FC; Goldstein G; Jackson P; Holbrook NM; Gutiérrez MV; Cavelier J
    Oecologia; 1995 Apr; 101(4):514-522. PubMed ID: 28306968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon relations and competition between woody species in a Central European hedgerow : II. Stomatal responses, water use, and hydraulic conductivity in the root/leaf pathway.
    Küppers M
    Oecologia; 1984 Nov; 64(3):344-354. PubMed ID: 28311449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stomatal Opening in Isolated Epidermal Strips of Vicia faba. I. Response to Light and to CO(2)-free Air.
    Fischer RA
    Plant Physiol; 1968 Dec; 43(12):1947-52. PubMed ID: 16656995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of abscisic acid in disturbed stomatal response characteristics of Tradescantia virginiana during growth at high relative air humidity.
    Nejad AR; van Meeteren U
    J Exp Bot; 2007; 58(3):627-36. PubMed ID: 17175553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guard cells of Commelina communis L. do not respond metabolically to osmotic stress in isolated epidermis: Implications for stomatal responses to drought and humidity.
    Grantz DA; Schwartz A
    Planta; 1988 May; 174(2):166-73. PubMed ID: 24221472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stomatal responses to humidity in isolated epidermes.
    Shope JC; Peak D; Mott KA
    Plant Cell Environ; 2008 Sep; 31(9):1290-8. PubMed ID: 18541007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized hydromechanical model for stomatal responses to hydraulic perturbations.
    Kwon HW; Choi MY
    J Theor Biol; 2014 Jan; 340():119-30. PubMed ID: 24060618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stomatal responses to changes in humidity in plants growing in the desert.
    Schulze ED; Lange OL; Buschbom U; Kappen L; Evenari M
    Planta; 1972 Sep; 108(3):259-70. PubMed ID: 24473858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stomatal oscillations at small apertures: indications for a fundamental insufficiency of stomatal feedback-control inherent in the stomatal turgor mechanism.
    Kaiser H; Kappen L
    J Exp Bot; 2001 Jun; 52(359):1303-13. PubMed ID: 11432949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature dependence of CO2 assimilation and stomatal aperture in leaf sections of Zea mays.
    Raschke K
    Planta; 1970 Dec; 91(4):336-63. PubMed ID: 24500098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Avoiding high relative air humidity during critical stages of leaf ontogeny is decisive for stomatal functioning.
    Fanourakis D; Carvalho SM; Almeida DP; Heuvelink E
    Physiol Plant; 2011 Jul; 142(3):274-86. PubMed ID: 21457269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stomatal responses to humidity and temperature in darkness.
    Mott KA; Peak D
    Plant Cell Environ; 2010 Jul; 33(7):1084-90. PubMed ID: 20199627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : II. The influence of climatic factors on carbon dioxide exchange and transpiration at the end of the dry period].
    Schulze E-; Lange OL; Koch W
    Oecologia; 1972 Dec; 8(4):334-355. PubMed ID: 28311256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : III. Daily courses of net photosynthesis and transpiration at the end of the dry period].
    Schulze ED; Lange OL; Koch W
    Oecologia; 1972 Dec; 9(4):317-340. PubMed ID: 28313070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaf hydraulic conductivity and stomatal responses to humidity in amphistomatous leaves.
    Mott KA
    Plant Cell Environ; 2007 Nov; 30(11):1444-9. PubMed ID: 17897414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.