These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28310)

  • 1. Specificity and regulation of gamma-aminobutyrate transport in Escherichia coli.
    Kahane S; Levitz R; Halpern YS
    J Bacteriol; 1978 Aug; 135(2):295-9. PubMed ID: 28310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic analysis of the gamma-aminobutyrate utilization pathway in Escherichia coli K-12.
    Dover S; Halpern YS
    J Bacteriol; 1974 Feb; 117(2):494-501. PubMed ID: 4590473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and properties of Escherichia coli K-12 mutants impaired in the utilization of gamma-aminobutyrate.
    Metzer E; Levitz R; Halpern YS
    J Bacteriol; 1979 Mar; 137(3):1111-8. PubMed ID: 374339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Escherichia coli gabDTPC operon: specific gamma-aminobutyrate catabolism and nonspecific induction.
    Schneider BL; Ruback S; Kiupakis AK; Kasbarian H; Pybus C; Reitzer L
    J Bacteriol; 2002 Dec; 184(24):6976-86. PubMed ID: 12446648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of gamma-aminobutyric acid degradation in Escherichia coli by nitrogen metabolism enzymes.
    Zaboura M; Halpern YS
    J Bacteriol; 1978 Feb; 133(2):447-51. PubMed ID: 24037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular organization of the Escherichia coli gab cluster: nucleotide sequence of the structural genes gabD and gabP and expression of the GABA permease gene.
    Niegemann E; Schulz A; Bartsch K
    Arch Microbiol; 1993; 160(6):454-60. PubMed ID: 8297211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of the pathway of -aminobutyrate breakdown in Escherichia coli K-12.
    Dover S; Halpern YS
    J Bacteriol; 1972 Apr; 110(1):165-70. PubMed ID: 4552985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A putrescine-inducible pathway comprising PuuE-YneI in which gamma-aminobutyrate is degraded into succinate in Escherichia coli K-12.
    Kurihara S; Kato K; Asada K; Kumagai H; Suzuki H
    J Bacteriol; 2010 Sep; 192(18):4582-91. PubMed ID: 20639325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo cloning and characterization of the gabCTDP gene cluster of Escherichia coli K-12.
    Metzer E; Halpern YS
    J Bacteriol; 1990 Jun; 172(6):3250-6. PubMed ID: 2188954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereospecific production of the herbicide phosphinothricin (glufosinate) by transamination: cloning, characterization, and overexpression of the gene encoding a phosphinothricin-specific transaminase from Escherichia coli.
    Bartsch K; Dichmann R; Schmitt P; Uhlmann E; Schulz A
    Appl Environ Microbiol; 1990 Jan; 56(1):7-12. PubMed ID: 2178553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of -aminobutyric acid as the sole carbon and nitrogen source by Escherichia coli K-12 mutants.
    Dover S; Halpern YS
    J Bacteriol; 1972 Feb; 109(2):835-43. PubMed ID: 4550821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of utilization of L-arginine, L-ornithine, agmatine, and putrescine as nitrogen sources in Escherichia coli K-12.
    Shaibe E; Metzer E; Halpern YS
    J Bacteriol; 1985 Sep; 163(3):938-42. PubMed ID: 3897202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. gltB gene and regulation of nitrogen metabolism by glutamine synthetase in Escherichia coli.
    Pahel G; Zelenetz AD; Tyler BM
    J Bacteriol; 1978 Jan; 133(1):139-48. PubMed ID: 22535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of a new gamma-glutamyl-phosphate analog, 4-(phosphonoacetyl)-L-alpha-aminobutyrate, with glutamine synthetase enzymes from Escherichia coli, plant, and mammalian sources.
    Wedler FC; Horn BR; Roby WG
    Arch Biochem Biophys; 1980 Jul; 202(2):482-90. PubMed ID: 6109519
    [No Abstract]   [Full Text] [Related]  

  • 15. Metabolic pathway for the utilization of L-arginine, L-ornithine, agmatine, and putrescine as nitrogen sources in Escherichia coli K-12.
    Shaibe E; Metzer E; Halpern YS
    J Bacteriol; 1985 Sep; 163(3):933-7. PubMed ID: 3897201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proline transport carrier-defective mutants of Escherichia coli K-12: properties and mapping.
    Motojima K; Yamato I; Anraku Y
    J Bacteriol; 1978 Oct; 136(1):5-9. PubMed ID: 361707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand recognition properties of the Escherichia coli 4-aminobutyrate transporter encoded by gabP. Specificity of Gab permease for heterocyclic inhibitors.
    King SC; Fleming SR; Brechtel CE
    J Biol Chem; 1995 Aug; 270(34):19893-7. PubMed ID: 7650003
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Im DK; Hong J; Gu B; Sung C; Oh MK
    Biotechnol J; 2020 Jun; 15(6):e1900346. PubMed ID: 32319741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of glutamate and GABA transport by adrenoceptors in primary astroglial cell cultures.
    Hansson E; Rönnbäck L
    Life Sci; 1989; 44(1):27-34. PubMed ID: 2563301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular analysis of two genes of the Escherichia coli gab cluster: nucleotide sequence of the glutamate:succinic semialdehyde transaminase gene (gabT) and characterization of the succinic semialdehyde dehydrogenase gene (gabD).
    Bartsch K; von Johnn-Marteville A; Schulz A
    J Bacteriol; 1990 Dec; 172(12):7035-42. PubMed ID: 2254272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.