These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28310031)

  • 21. Growth and vitality of epiphytic lichens : II. Modelling of carbon gain using field and laboratory data.
    Sundberg B; Palmqvist K; Esseen PA; Renhorn KE
    Oecologia; 1996 Dec; 109(1):10-18. PubMed ID: 28307599
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [CO2-exchange of some lichens after absorption of water vapour].
    Bertsch A
    Planta; 1966 Jun; 68(2):157-66. PubMed ID: 24557739
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pseudocyphellaria dissimilis: a desiccation-sensitive, highly shade-adapted lichen from New Zealand.
    Green TG; Kilian E; Lange OL
    Oecologia; 1991 Feb; 85(4):498-503. PubMed ID: 28312496
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low moisture availability inhibits the enhancing effect of increased soil temperature on net photosynthesis of white birch (Betula papyrifera) seedlings grown under ambient and elevated carbon dioxide concentrations.
    Ambebe TF; Dang QL
    Tree Physiol; 2009 Nov; 29(11):1341-8. PubMed ID: 19797245
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CO
    Tretiach M; Geletti A
    Oecologia; 1997 Aug; 111(4):515-522. PubMed ID: 28308112
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. III: fitting of experimental data by a simple model.
    André MJ
    Biosystems; 2013 Aug; 113(2):104-14. PubMed ID: 23153764
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of heat waves, elevated [CO2 ] and low soil water availability on northern red oak (Quercus rubra L.) seedlings.
    Bauweraerts I; Wertin TM; Ameye M; McGuire MA; Teskey RO; Steppe K
    Glob Chang Biol; 2013 Feb; 19(2):517-28. PubMed ID: 23504789
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts.
    Lange OL; Kilian E; Ziegler H
    Oecologia; 1986 Dec; 71(1):104-110. PubMed ID: 28312090
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct and indirect effects of elevated atmospheric CO2 on net ecosystem production in a Chesapeake Bay tidal wetland.
    Erickson JE; Peresta G; Montovan KJ; Drake BG
    Glob Chang Biol; 2013 Nov; 19(11):3368-78. PubMed ID: 23828758
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The impact of ten years at -20°C on gas exchange in five lichen species.
    Larson DW
    Oecologia; 1989 Jan; 78(1):87-92. PubMed ID: 28311905
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of CO
    Tolley LC; Strain BR
    Oecologia; 1985 Jan; 65(2):166-172. PubMed ID: 28310662
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nocturnal respiration of lichens in their natural habitat is not affected by preceding diurnal net photosynthesis.
    Lange OL; Green TG
    Oecologia; 2006 Jun; 148(3):396-404. PubMed ID: 16514535
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intraspecific variation in photosynthetic responses of trebouxioid lichens with reference to the activity of a carbon-concentrating mechanism.
    Smith EC; Griffiths H
    Oecologia; 1998 Jan; 113(3):360-369. PubMed ID: 28307820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Which are the most important parameters for modelling carbon assimilation in boreal Norway spruce under elevated [CO(2)] and temperature conditions?
    Hall M; Medlyn BE; Abramowitz G; Franklin O; Räntfors M; Linder S; Wallin G
    Tree Physiol; 2013 Nov; 33(11):1156-76. PubMed ID: 23525155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gas exchange rates and chlorophyll content of epi- and endolithic lichens from the Trieste Karst (NE Italy).
    Tretiach M; Pecchiari M
    New Phytol; 1995 Aug; 130(4):585-592. PubMed ID: 33874482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in photosynthetic capacity, carboxylation efficiency, and CO2 compensation point associated with midday stomatal closure and midday depression of net CO2 exchange of leaves of Quercus suber.
    Tenhunen JD; Lange OL; Gebel J; Beyschlag W; Weber JA
    Planta; 1984 Sep; 162(3):193-203. PubMed ID: 24253090
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydration-dependent photosynthetic production of lichens: what do laboratory studies tell us about field performance?
    Lange OL; Green TG; Heber U
    J Exp Bot; 2001 Oct; 52(363):2033-42. PubMed ID: 11559739
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation.
    Chen GY; Yong ZH; Liao Y; Zhang DY; Chen Y; Zhang HB; Chen J; Zhu JG; Xu DQ
    Plant Cell Physiol; 2005 Jul; 46(7):1036-45. PubMed ID: 15840641
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface hydrophobicity causes SO2 tolerance in lichens.
    Hauck M; Jürgens SR; Brinkmann M; Herminghaus S
    Ann Bot; 2008 Mar; 101(4):531-9. PubMed ID: 18077467
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by field-grown maize.
    Hussain MZ; Vanloocke A; Siebers MH; Ruiz-Vera UM; Cody Markelz RJ; Leakey AD; Ort DR; Bernacchi CJ
    Glob Chang Biol; 2013 May; 19(5):1572-84. PubMed ID: 23505040
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.