These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 28310183)

  • 1. Differential sensitivity to humidity of daily photosynthesis in the field in C
    Bunce JA
    Oecologia; 1983 Mar; 57(1-2):262-265. PubMed ID: 28310183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low humidity effects on photosynthesis in single leaves of C
    Bunce JA
    Oecologia; 1982 Aug; 54(2):233-235. PubMed ID: 28311433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of gas exchange to humidity in populations of three herbs from environments differing in atmospheric water.
    Bunce JA
    Oecologia; 1986 Dec; 71(1):117-120. PubMed ID: 28312092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : III. Daily courses of net photosynthesis and transpiration at the end of the dry period].
    Schulze ED; Lange OL; Koch W
    Oecologia; 1972 Dec; 9(4):317-340. PubMed ID: 28313070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The midday depression of CO2 assimilation in leaves of Arbutus unedo L.: diurnal changes in photosynthetic capacity related to changes in temperature and humidity.
    Raschke K; Resemann A
    Planta; 1986 Sep; 168(4):546-58. PubMed ID: 24232332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of growth temperature and nitrogen nutrition on expression of C
    Oono J; Hatakeyama Y; Yabiku T; Ueno O
    J Plant Res; 2022 Jan; 135(1):15-27. PubMed ID: 34519912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relative contributions of reduced photorespiration, and improved water-and nitrogen-use efficiencies, to the advantages of C
    Monson RK
    Oecologia; 1989 Aug; 80(2):215-221. PubMed ID: 28313110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The response of foliar gas exchange to exogenously applied ethylene.
    Taylor GE; Gunderson CA
    Plant Physiol; 1986 Nov; 82(3):653-7. PubMed ID: 16665086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The diurnal course of leaf gas exchange of the C
    Tenhunen JD
    Oecologia; 1982 Jun; 53(3):310-316. PubMed ID: 28311733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stomatal responses to humidity in Opuntia inermis in relation to control of CO
    Osmond CB; Ludlow MM; Davis R; Cowan IR; Powles SB; Winter K
    Oecologia; 1979 Jul; 41(1):65-76. PubMed ID: 28310360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice.
    Shimono H; Nakamura H; Hasegawa T; Okada M
    Glob Chang Biol; 2013 Aug; 19(8):2444-53. PubMed ID: 23564676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field photosynthesis, microclimate and water relations of an exotic temperate liana, Pueraria lobata, kudzu.
    Forseth IN; Teramura AH
    Oecologia; 1987 Jan; 71(2):262-267. PubMed ID: 28312254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of air humidity and temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions : III. The effect on water use efficiency.
    Schulze E-; Lange OL; Evenari M; Kappen L; Buschbom U
    Oecologia; 1975 Dec; 19(4):303-314. PubMed ID: 28309242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : II. The influence of climatic factors on carbon dioxide exchange and transpiration at the end of the dry period].
    Schulze E-; Lange OL; Koch W
    Oecologia; 1972 Dec; 8(4):334-355. PubMed ID: 28311256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactive response of photosynthetic characteristics in Haloxylon ammodendron and Hedysarum scoparium exposed to soil water and air vapor pressure deficits.
    Gong C; Wang J; Hu C; Wang J; Ning P; Bai J
    J Environ Sci (China); 2015 Aug; 34():184-96. PubMed ID: 26257361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leaf and canopy photosynthetic CO
    Piedade MT; Long SP; Junk WJ
    Oecologia; 1994 Mar; 97(2):193-201. PubMed ID: 28313928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions : II. The significance of leaf water status and internal carbon dioxide concentration.
    Schulze E-; Lange OL; Kappen L; Evenari M; Buschbom U
    Oecologia; 1975 Sep; 18(3):219-233. PubMed ID: 28308679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by field-grown maize.
    Hussain MZ; Vanloocke A; Siebers MH; Ruiz-Vera UM; Cody Markelz RJ; Leakey AD; Ort DR; Bernacchi CJ
    Glob Chang Biol; 2013 May; 19(5):1572-84. PubMed ID: 23505040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaf and canopy responses to elevated CO
    Ellsworth DS; Oren R; Huang C; Phillips N; Hendrey GR
    Oecologia; 1995 Oct; 104(2):139-146. PubMed ID: 28307350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of growth, photosynthetic performance and yield by exclusion of ambient UV components in C3 and C4 plants.
    Kataria S; Guruprasad KN; Ahuja S; Singh B
    J Photochem Photobiol B; 2013 Oct; 127():140-52. PubMed ID: 24041852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.