These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28310213)

  • 1. The coevolution of Euphydryas chalcedona butterflies and their larval host plants : III. Oviposition behavior and host plant quality.
    Williams KS
    Oecologia; 1983 Feb; 56(2-3):336-340. PubMed ID: 28310213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The coevolution of Euphydryas chalcedona butterflies and their larval host plants : I. Larval feeding behavior and host plant chemistry.
    Williams KS; Lincoln DE; Ehrlich PR
    Oecologia; 1983 Feb; 56(2-3):323-329. PubMed ID: 28310211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The coevolution of Euphydryas chalcedona butterflies and their larval host plants : II. Maternal and host plant effects on larval growth, development, and food-use efficiency.
    Williams KS; Lincoln DE; Ehrlich PR
    Oecologia; 1983 Feb; 56(2-3):330-335. PubMed ID: 28310212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental controls on the seasonality of a drought deciduous shrub, Diplacus aurantiacus and its predator, the checkerspot butterfly, Euphydryas chalcedona.
    Mooney HA; Ehrlich PR; Lincoln DE; Williams KS
    Oecologia; 1980 May; 45(2):143-146. PubMed ID: 28309522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal and spatial variability in the interaction between the checkerspot butterfly, Euphydryas chalcedona and its principal food source, the Californian shrub, Diplacus aurantiacus.
    Mooney HA; Williams KS; Lincoln DE; Ehrlich PR
    Oecologia; 1981 Aug; 50(2):195-198. PubMed ID: 28311087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coevolution of the checkerspot butterfly Euphydryas chalcedona and its larval food plant Diplacus aurantiacus: larval response to protein and leaf resin.
    Lincoln DE; Newton TS; Ehrlich PR; Williams KS
    Oecologia; 1982 Feb; 52(2):216-223. PubMed ID: 28310511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Herbivory on Diplacus aurantiacus shrubs in sun and shade.
    Lincoln DE; Mooney HA
    Oecologia; 1984 Oct; 64(2):173-176. PubMed ID: 28312335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil nutrient effects on oviposition preference, larval performance, and chemical defense of a specialist insect herbivore.
    Prudic KL; Oliver JC; Bowers MD
    Oecologia; 2005 May; 143(4):578-87. PubMed ID: 15909129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Host-plant protein and phenolic resin effects on larval growth and survival of a butterfly.
    Lincoln DE
    J Chem Ecol; 1985 Nov; 11(11):1459-67. PubMed ID: 24311239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Host plant choice in the comma butterfly-larval choosiness may ameliorate effects of indiscriminate oviposition.
    Gamberale-Stille G; Söderlind L; Janz N; Nylin S
    Insect Sci; 2014 Aug; 21(4):499-506. PubMed ID: 24006353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Population biology of the checkerspot butterfly, Euphydryas chalcedona structure of the Jasper Ridge colony.
    Brown IL; Ehrlich PR
    Oecologia; 1980 Jan; 47(2):239-251. PubMed ID: 28309478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Losing a battle but winning the war: moving past preference-performance to understand native herbivore-novel host plant interactions.
    Brown LM; Breed GA; Severns PM; Crone EE
    Oecologia; 2017 Feb; 183(2):441-453. PubMed ID: 27913864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Positive effects of cyanogenic glycosides in food plants on larval development of the common blue butterfly.
    Goverde M; Bazin A; Kéry M; Shykoff JA; Erhardt A
    Oecologia; 2008 Sep; 157(3):409-18. PubMed ID: 18600348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preference, performance, and chemical defense in an endangered butterfly using novel and ancestral host plants.
    Haan NL; Bowers MD; Bakker JD
    Sci Rep; 2021 Jan; 11(1):992. PubMed ID: 33446768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allocation to reproduction in the chaparral shrub, Diplacus aurantiacus.
    Alpert P; Newell EA; Chu C; Glyphis J; Gulmon SL; Hollinger DY; Johnson ND; Mooney HA; Puttick G
    Oecologia; 1985 Jun; 66(3):309-316. PubMed ID: 28310855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resource overlap and dilution effects shape host plant use in a myrmecophilous butterfly.
    Valdés A; Ehrlén J
    J Anim Ecol; 2019 Apr; 88(4):649-658. PubMed ID: 30688361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unravelling the role of host plant expansion in the diversification of a Neotropical butterfly genus.
    McClure M; Elias M
    BMC Evol Biol; 2016 Jun; 16(1):128. PubMed ID: 27306900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why stay in a bad relationship? The effect of local host phenology on a generalist butterfly feeding on a low-ranked host.
    Audusseau H; de la Paz Celorio-Mancera M; Janz N; Nylin S
    BMC Evol Biol; 2016 Jun; 16(1):144. PubMed ID: 27356867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of canopy cover and seasonal change on host plant quality for the endangered Karner blue butterfly (Lycaeidesmelissasamuelis).
    Grundel R; Pavlovic NB; Sulzman CL
    Oecologia; 1998 Apr; 114(2):243-250. PubMed ID: 28307938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. THE EVOLUTION OF CARBON ALLOCATION TO PLANT SECONDARY METABOLITES: A GENETIC ANALYSIS OF COST IN DIPLACUS AURANTIACUS.
    Han K; Lincoln DE
    Evolution; 1994 Oct; 48(5):1550-1563. PubMed ID: 28568412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.