These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 28310231)
1. Bunchgrass architecture, light interception, and water-use efficiency: assessment by fiber optic point quadrats and gas exchange. Caldwell MM; Dean TJ; Nowak RS; Dzurec RS; Richards JH Oecologia; 1983 Sep; 59(2-3):178-184. PubMed ID: 28310231 [TBL] [Abstract][Full Text] [Related]
2. The effects of the spatial pattern of defoliation on regrowth of a tussock grass : III. Photosynthesis, canopy structure and light interception. Gold WG; Caldwell MM Oecologia; 1990 Jan; 82(1):12-17. PubMed ID: 28313131 [TBL] [Abstract][Full Text] [Related]
3. The effects of the spatial pattern of defoliation on regrowth of a tussock grass : II. Canopy gas exchange. Gold WG; Caldwell MM Oecologia; 1989 Dec; 81(4):437-442. PubMed ID: 28312634 [TBL] [Abstract][Full Text] [Related]
4. The effects of the spatial pattern of defoliation on regrowth of a tussock grass : I. Growth responses. Gold WG; Caldwell MM Oecologia; 1989 Aug; 80(3):289-296. PubMed ID: 28312055 [TBL] [Abstract][Full Text] [Related]
5. Coping with herbivory: Photosynthetic capacity and resource allocation in two semiarid Agropyron bunchgrasses. Caldwell MM; Richards JH; Johnson DA; Nowak RS; Dzurec RS Oecologia; 1981 Aug; 50(1):14-24. PubMed ID: 28310058 [TBL] [Abstract][Full Text] [Related]
6. Partial shading of lateral branches affects growth, and foliage nitrogen- and water-use efficiencies in the conifer Cunninghamia lanceolata growing in a warm monsoon climate. Dong T; Li J; Zhang Y; Korpelainen H; Niinemets Ü; Li C Tree Physiol; 2015 Jun; 35(6):632-43. PubMed ID: 26032625 [TBL] [Abstract][Full Text] [Related]
7. Light field heterogeneity among tussock grasses: Theoretical considerations of light harvesting and seedling establishment in tussocks and uniform tiller distributions. Ryel RI; Caldwell MM; Beyschlag W Oecologia; 1994 Aug; 98(3-4):241-246. PubMed ID: 28313898 [TBL] [Abstract][Full Text] [Related]
8. Plant competition for light analyzed with a multispecies canopy model : I. Model development and influence of enhanced UV-B conditions on photosynthesis in mixed wheat and wild oat canopies. Ryel RJ; Barnes PW; Beyschlag W; Caldwell MM; Flint SD Oecologia; 1990 Mar; 82(3):304-310. PubMed ID: 28312703 [TBL] [Abstract][Full Text] [Related]
9. Conopy architecture of Larrea tridentata (DC.) Cov., a desert shrub: foliage orientation and direct beam radiation interception. Neufeld HS; Meinzer FC; Wisdom CS; Rasoul Sharifi M; Rundel PW; Neufeld MS; Goldring Y; Cunningham GL Oecologia; 1988 Feb; 75(1):54-60. PubMed ID: 28311833 [TBL] [Abstract][Full Text] [Related]
10. Photosynthesis and resource distribution through plant canopies. Niinemets U Plant Cell Environ; 2007 Sep; 30(9):1052-71. PubMed ID: 17661747 [TBL] [Abstract][Full Text] [Related]
11. A test of compensatory photosynthesis in the field: Implications for herbivory tolerance. Nowak RS; Caldwell MM Oecologia; 1984 Mar; 61(3):311-318. PubMed ID: 28311055 [TBL] [Abstract][Full Text] [Related]
12. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : II. The influence of climatic factors on carbon dioxide exchange and transpiration at the end of the dry period]. Schulze E-; Lange OL; Koch W Oecologia; 1972 Dec; 8(4):334-355. PubMed ID: 28311256 [TBL] [Abstract][Full Text] [Related]
13. [The effect of light and temperature of the CO Schulze ED Oecologia; 1972 Sep; 9(3):235-258. PubMed ID: 28313125 [TBL] [Abstract][Full Text] [Related]
14. The geometry of light interception by shoots of Heteromeles arbutifolia: morphological and physiological consequences for individual leaves. Valladares F; Pearcy RW Oecologia; 1999 Nov; 121(2):171-182. PubMed ID: 28308557 [TBL] [Abstract][Full Text] [Related]
15. Leaf and canopy photosynthetic CO Piedade MT; Long SP; Junk WJ Oecologia; 1994 Mar; 97(2):193-201. PubMed ID: 28313928 [TBL] [Abstract][Full Text] [Related]
16. Differences in gas exchange contribute to habitat differentiation in Iberian columbines from contrasting light and water environments. Jaime R; Serichol C; Alcántara JM; Rey PJ Plant Biol (Stuttg); 2014 Mar; 16(2):354-64. PubMed ID: 23957244 [TBL] [Abstract][Full Text] [Related]
17. Structural adjustments in resprouting trees drive differences in post-fire transpiration. Nolan RH; Mitchell PJ; Bradstock RA; Lane PN Tree Physiol; 2014 Feb; 34(2):123-36. PubMed ID: 24536069 [TBL] [Abstract][Full Text] [Related]
18. Leaf and canopy responses to elevated CO Ellsworth DS; Oren R; Huang C; Phillips N; Hendrey GR Oecologia; 1995 Oct; 104(2):139-146. PubMed ID: 28307350 [TBL] [Abstract][Full Text] [Related]
19. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : III. Daily courses of net photosynthesis and transpiration at the end of the dry period]. Schulze ED; Lange OL; Koch W Oecologia; 1972 Dec; 9(4):317-340. PubMed ID: 28313070 [TBL] [Abstract][Full Text] [Related]
20. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem. Renninger HJ; Carlo N; Clark KL; Schäfer KV Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]