These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 28310535)

  • 21. Predators as stressors? Physiological and reproductive consequences of predation risk in tropical stonechats (Saxicola torquata axillaris).
    Scheuerlein A; Van't Hof TJ; Gwinner E
    Proc Biol Sci; 2001 Aug; 268(1476):1575-82. PubMed ID: 11487404
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Variation among individuals in photoperiod responses: Effects of breeding schedule, photoperiod, and age-related photoperiodic experience in birds.
    Watts HE; MacDougall-Shackleton SA; Hahn TP
    J Exp Zool A Ecol Genet Physiol; 2015 Jul; 323(6):368-74. PubMed ID: 25865942
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasma-luteinizing hormone and prolactin during circannual rhythms of gonadal maturation and molt in male and female European starlings.
    Dawson A
    J Biol Rhythms; 1997 Aug; 12(4):371-7. PubMed ID: 9438885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Persistence of circannual rhythms under constant periodic and aperiodic light conditions: sex differences and relationship with the external environment.
    Budki P; Rani S; Kumar V
    J Exp Biol; 2012 Nov; 215(Pt 21):3774-85. PubMed ID: 22811243
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Taxonomic status and evolutionary history of the Saxicola torquata complex.
    Zink RM; Pavlova A; Drovetski S; Wink M; Rohwer S
    Mol Phylogenet Evol; 2009 Sep; 52(3):769-73. PubMed ID: 19464380
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Avian circannual systems: persistence and sex differences.
    Rani S; Kumar V
    Gen Comp Endocrinol; 2013 Sep; 190():61-7. PubMed ID: 23631901
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement.
    Goldman BD
    J Biol Rhythms; 2001 Aug; 16(4):283-301. PubMed ID: 11506375
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Circadian aspect of photoperiodic time measurement in a female house sparrow, Passer domesticus.
    Ravikumar G; Senthilkumaran B; Tewary PD; Goel AK
    J Biol Rhythms; 1995 Dec; 10(4):319-23. PubMed ID: 8639940
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Annual cycles of metabolic rate are genetically determined but can be shifted by phenotypic flexibility.
    Versteegh MA; Helm B; Gwinner E; Tieleman BI
    J Exp Biol; 2012 Oct; 215(Pt 19):3459-66. PubMed ID: 22771752
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Timing of feather molt related to date of spring migration in male white-throated sparrows, Zonotrichia albicollis.
    Cristol DA; Johnson KM; Jenkins KD; Hawley DM
    J Exp Zool A Ecol Genet Physiol; 2014 Dec; 321(10):586-94. PubMed ID: 25287905
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A direct comparison of photoperiodic time measurement and the circadian system in European starlings and Japanese quail.
    King VM; Bentley GE; Follett BK
    J Biol Rhythms; 1997 Oct; 12(5):431-42. PubMed ID: 9376642
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Control of molt in birds: association with prolactin and gonadal regression in starlings.
    Dawson A
    Gen Comp Endocrinol; 2006 Jul; 147(3):314-22. PubMed ID: 16530194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Timing of breeding in variable environments: tropical birds as model systems.
    Hau M
    Horm Behav; 2001 Sep; 40(2):281-90. PubMed ID: 11534993
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photoperiodic response may facilitate adaptation to climatic change in long-distance migratory birds.
    Coppack T; Pulido F; Czisch M; Auer DP; Berthold P
    Proc Biol Sci; 2003 Aug; 270 Suppl 1(Suppl 1):S43-6. PubMed ID: 12952632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression of annual cycles in preen wax composition in red knots: constraints on the changing phenotype.
    Reneerkens J; Piersma T; Damsté JS
    J Exp Zool A Ecol Genet Physiol; 2007 Mar; 307(3):127-39. PubMed ID: 17397066
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A long photoperiod overrides non-photoperiodic factors in blue tits' timing of reproduction.
    Lambrechts MM; Perret P
    Proc Biol Sci; 2000 Mar; 267(1443):585-8. PubMed ID: 10787162
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoperiod-independent changes in immunoreactive brain gonadotropin-releasing hormone (GnRH) in a free-living, tropical bird.
    Moore IT; Bentley GE; Wotus C; Wingfield JC
    Brain Behav Evol; 2006; 68(1):37-44. PubMed ID: 16675899
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photorefractoriness in birds--photoperiodic and non-photoperiodic control.
    Dawson A; Sharp PJ
    Gen Comp Endocrinol; 2007; 153(1-3):378-84. PubMed ID: 17367789
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Change in photoperiodic cycle affects life span in a prosimian primate (Microcebus murinus).
    Perret M
    J Biol Rhythms; 1997 Apr; 12(2):136-45. PubMed ID: 9090567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Seasonal differences in the hormonal control of territorial aggression in free-living European stonechats.
    Canoine V; Gwinner E
    Horm Behav; 2002 Feb; 41(1):1-8. PubMed ID: 11863378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.