These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 28310669)
21. Performance of moth larvae on birch in relation to altitude, climate, host quality and parasitoids. Virtanen T; Neuvonen S Oecologia; 1999 Jul; 120(1):92-101. PubMed ID: 28308059 [TBL] [Abstract][Full Text] [Related]
22. Genetic and environmental factors behind foliar chemistry of the mature mountain birch. Haviola S; Neuvonen S; Rantala MJ; Saikkonen K; Salminen JP; Saloniemi I; Yang S; Ruuhola T J Chem Ecol; 2012 Jul; 38(7):902-13. PubMed ID: 22684775 [TBL] [Abstract][Full Text] [Related]
23. Variation among and within mountain birch trees in foliage phenols, carbohydrates, and amino acids, and in growth ofEpirrita autumnata larvae. Suomela J; Ossipov V; Haukioja E J Chem Ecol; 1995 Oct; 21(10):1421-46. PubMed ID: 24233674 [TBL] [Abstract][Full Text] [Related]
24. Sources of variation in rapidly inducible responses to leaf damage in the mountain birch-insect herbivore system. Hanhimäki S; Senn J Oecologia; 1992 Sep; 91(3):318-331. PubMed ID: 28313538 [TBL] [Abstract][Full Text] [Related]
25. Growth performance of Epirrita autumnata (Lepidoptera: Geometridae) on mountain birch: trees, broods, and tree x brood interactions. Ayres MP; Suomela J; MacLean SF Oecologia; 1987 Dec; 74(3):450-457. PubMed ID: 28312487 [TBL] [Abstract][Full Text] [Related]
26. Waves and synchrony in Epirrita autumnata/Operophtera brumata outbreaks. II. Sunspot activity cannot explain cyclic outbreaks. Nilssen AC; Tenow O; Bylund H J Anim Ecol; 2007 Mar; 76(2):269-75. PubMed ID: 17302834 [TBL] [Abstract][Full Text] [Related]
27. Waves and synchrony in Epirrita autumnata/Operophtera brumata outbreaks. I. Lagged synchrony: regionally, locally and among species. Tenow O; Nilssen AC; Bylund H; Hogstad O J Anim Ecol; 2007 Mar; 76(2):258-68. PubMed ID: 17302833 [TBL] [Abstract][Full Text] [Related]
28. Wound-induced oxidative responses in mountain birch leaves. Ruuhola T; Yang S Ann Bot; 2006 Jan; 97(1):29-37. PubMed ID: 16254021 [TBL] [Abstract][Full Text] [Related]
29. Defoliating insect immune defense interacts with induced plant defense during a population outbreak. Kapari L; Haukioja E; Rantala MJ; Ruuhola T Ecology; 2006 Feb; 87(2):291-6. PubMed ID: 16637353 [TBL] [Abstract][Full Text] [Related]
30. Temperature as a modifier of plant-herbivore interaction. Yang S; Ruuhola T; Haviola S; Rantala MJ J Chem Ecol; 2007 Mar; 33(3):463-75. PubMed ID: 17268825 [TBL] [Abstract][Full Text] [Related]
31. Direct effects of heavy metal pollution on the immune function of a geometrid moth, Epirrita autumnata. van Ooik T; Pausio S; Rantala MJ Chemosphere; 2008 May; 71(10):1840-4. PubMed ID: 18359060 [TBL] [Abstract][Full Text] [Related]
33. Immunological memory of mountain birches: effects of phenolics on performance of the autumnal moth depend on herbivory history of trees. Ruuhola T; Salminen JP; Haviola S; Yang S; Rantala MJ J Chem Ecol; 2007 Jun; 33(6):1160-76. PubMed ID: 17502999 [TBL] [Abstract][Full Text] [Related]
34. Testing the enemies hypothesis in forest stands: the important role of tree species composition. Riihimäki J; Kaitaniemi P; Koricheva J; Vehviläinen H Oecologia; 2005 Jan; 142(1):90-7. PubMed ID: 15322903 [TBL] [Abstract][Full Text] [Related]
35. Herbivory by an Outbreaking Moth Increases Emissions of Biogenic Volatiles and Leads to Enhanced Secondary Organic Aerosol Formation Capacity. Yli-Pirilä P; Copolovici L; Kännaste A; Noe S; Blande JD; Mikkonen S; Klemola T; Pulkkinen J; Virtanen A; Laaksonen A; Joutsensaari J; Niinemets Ü; Holopainen JK Environ Sci Technol; 2016 Nov; 50(21):11501-11510. PubMed ID: 27704791 [TBL] [Abstract][Full Text] [Related]
36. Larval parasitism of the autumnal moth reduces feeding intensity on the mountain birch. Ammunét T; Klemola N; Heisswolf A; Klemola T Oecologia; 2009 Mar; 159(3):539-47. PubMed ID: 19066967 [TBL] [Abstract][Full Text] [Related]
37. Covariation of fluctuating asymmetry, herbivory and chemistry during birch leaf expansion. Lempa K; Martel J; Koricheva J; Haukioja E; Ossipov V; Ossipova S; Pihlaja K Oecologia; 2000 Feb; 122(3):354-360. PubMed ID: 28308286 [TBL] [Abstract][Full Text] [Related]
38. Shelters of leaf-tying herbivores decompose faster than leaves damaged by free-living insects: Implications for nutrient turnover in polluted habitats. Kozlov MV; Zverev V; Zvereva EL Sci Total Environ; 2016 Oct; 568():946-951. PubMed ID: 27288287 [TBL] [Abstract][Full Text] [Related]
39. Birch leaves as a resource for herbivores: Seasonal occurrence of increased resistance in foliage after mechanical damage of adjacent leaves. Haukioja E; Niemelä P Oecologia; 1979 Jan; 39(2):151-159. PubMed ID: 28309433 [TBL] [Abstract][Full Text] [Related]
40. Spatial synchrony in sub-arctic geometrid moth outbreaks reflects dispersal in larval and adult life cycle stages. Vindstad OPL; Jepsen JU; Yoccoz NG; Bjørnstad ON; Mesquita MDS; Ims RA J Anim Ecol; 2019 Aug; 88(8):1134-1145. PubMed ID: 30737772 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]