These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 28310704)

  • 1. The cost of copepod reproduction: increased susceptibility to fish predation.
    Winfield IJ; Townsend CR
    Oecologia; 1983 Dec; 60(3):406-411. PubMed ID: 28310704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective predation and habitat shift in a copepod species - support for the predation hypothesis.
    Vuorinen I; Rajasilta M; Salo J
    Oecologia; 1983 Aug; 59(1):62-4. PubMed ID: 25024148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Egg-brooding, body size and predation risk in planktonic marine copepods.
    Logerwell EA; Ohman MD
    Oecologia; 1999 Nov; 121(3):426-431. PubMed ID: 28308333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ovigerity, selective predation, and variable diel vertical migration in Euchaeta elongata (Copepoda: Calanoida).
    Bollens SM; Frost BW
    Oecologia; 1991 Jul; 87(2):155-161. PubMed ID: 28313831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of size on predation risk, behavioural response to fish, and cost of reduced feeding in larval Ischnura verticalis (Coenagrionidae: Odonata).
    Dixon SM; Baker RL
    Oecologia; 1988 Jul; 76(2):200-205. PubMed ID: 28312197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of light level on the functional response of a zooplanktonivorous fish.
    Townsend CR; Risebrow AJ
    Oecologia; 1982 Jun; 53(3):293-295. PubMed ID: 28311729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predation risk triggers copepod small-scale behavior in the Baltic Sea.
    MÖller KO; St John M; Temming A; Diekmann R; Peters J; Floeter J; Sell AF; Herrmann JP; Gloe D; Schmidt JO; Hinrichsen HH; MÖllmann C
    J Plankton Res; 2020; 42(6):702-713. PubMed ID: 33239965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fishing spiders, green sunfish, and a stream-dwelling water strider: male-female conflict and prey responses to single versus multiple predator environments.
    Krupa JJ; Sih A
    Oecologia; 1998 Nov; 117(1-2):258-265. PubMed ID: 28308495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fitness and community consequences of avoiding multiple predators.
    Peckarsky BL; McIntosh AR
    Oecologia; 1998 Feb; 113(4):565-576. PubMed ID: 28308037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An avoidance learning submodel for a general predation model.
    Dill LM
    Oecologia; 1973 Dec; 13(4):291-312. PubMed ID: 28308569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oomycete parasites in freshwater copepods of Patagonia: effects on survival and recruitment.
    Garcia RD; Jara FG; Steciow MM; Reissig M
    Dis Aquat Organ; 2018 Jul; 129(2):123-134. PubMed ID: 29972373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Piscivore efficiency and refuging prey: the importance of predator search mode.
    Eklöv P; Diehl S
    Oecologia; 1994 Aug; 98(3-4):344-353. PubMed ID: 28313911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plankton predation rates in turbulence: a study of the limitations imposed on a predator with a non-spherical field of sensory perception.
    Lewis DM; Bala SI
    J Theor Biol; 2006 Sep; 242(1):44-61. PubMed ID: 16542686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Foraging and vulnerability traits modify predator-prey body mass allometry: freshwater macroinvertebrates as a case study.
    Klecka J; Boukal DS
    J Anim Ecol; 2013 Sep; 82(5):1031-41. PubMed ID: 23869526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative effects of exophytic predation, endophytic predation, and intraspecific competition on a subcortical herbivore: consequences to the reproduction of Ips pini and Thanasimus dubius.
    Aukema BH; Raffa KF
    Oecologia; 2002 Dec; 133(4):483-491. PubMed ID: 28466160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Use of Winter Water Temperature and Food Composition by the Copepod
    Choi JY; Kim SK
    Biology (Basel); 2021 May; 10(5):. PubMed ID: 34062893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predator-prey interactions, flight initiation distance and brain size.
    Møller AP; Erritzøe J
    J Evol Biol; 2014 Jan; 27(1):34-42. PubMed ID: 25990564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trait-based diet selection: prey behaviour and morphology predict vulnerability to predation in reef fish communities.
    Green SJ; Côté IM
    J Anim Ecol; 2014 Nov; 83(6):1451-60. PubMed ID: 24861366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The reproductive effort of Lepeophtheirus pectoralis (Copepoda: Caligidae): insights into the egg production strategy of parasitic copepods.
    Frade DG; Santos MJ; Cavaleiro FI
    Parasitology; 2016 Jan; 143(1):87-96. PubMed ID: 26549240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Satiation-dependent, intra-cohort variations in prey size selection of young roach (Rutilus rutilus).
    Mikheev VN; Wanzenböck J
    Oecologia; 1999 Dec; 121(4):499-505. PubMed ID: 28308359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.