These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 28310811)

  • 1. Cycling of carbon and oxygen in layers of marine microphytes; a simulation model and its eco-physiological implications.
    Ludden E; Admiraal W; Colijn F
    Oecologia; 1985 Apr; 66(1):50-59. PubMed ID: 28310811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The acquisition of inorganic carbon by four red macroalgae.
    Johnston AM; Maberly SC; Raven JA
    Oecologia; 1992 Dec; 92(3):317-326. PubMed ID: 28312597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. River Water Quality Model no. 1 (RWQM1): case study II. Oxygen and nitrogen conversion processes in the River Glatt (Switzerland).
    Reichert P
    Water Sci Technol; 2001; 43(5):51-60. PubMed ID: 11379156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The contribution of bacteria to algal growth by carbon cycling.
    Bai X; Lant P; Pratt S
    Biotechnol Bioeng; 2015 Apr; 112(4):688-95. PubMed ID: 25312046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The physiological response of two green calcifying algae from the Great Barrier Reef towards high dissolved inorganic and organic carbon (DIC and DOC) availability.
    Meyer FW; Vogel N; Teichberg M; Uthicke S; Wild C
    PLoS One; 2015; 10(8):e0133596. PubMed ID: 26267650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The extended Kalman filter for forecast of algal bloom dynamics.
    Mao JQ; Lee JH; Choi KW
    Water Res; 2009 Sep; 43(17):4214-24. PubMed ID: 19577268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of algal patch depletion: importance of consumptive and non-consumptive losses in mayfly-diatom systems.
    Scrimgeour GJ; Culp JM; Bothwell ML; Wrona FJ; McKee MH
    Oecologia; 1991 Jan; 85(3):343-348. PubMed ID: 28312038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of macroalgal blooms on carbon and nitrogen biogeochemical cycling in photoautotrophic sediments: an experimental mesocosm.
    GarcĂ­a-Robledo E; Corzo A
    Mar Pollut Bull; 2011 Jul; 62(7):1550-6. PubMed ID: 21550070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of sediment deposition on periphytic biomass, photosynthetic activity and algal community structure.
    Izagirre O; Serra A; Guasch H; Elosegi A
    Sci Total Environ; 2009 Oct; 407(21):5694-700. PubMed ID: 19666189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional numerical simulation of water quality and sediment-associated processes with application to a Mississippi Delta lake.
    Chao X; Jia Y; Shields FD; Wang SS; Cooper CM
    J Environ Manage; 2010 Jul; 91(7):1456-66. PubMed ID: 20227817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of deposit-feeding tubificid worms and filter-feeding bivalves on benthic-pelagic coupling: implications for the restoration of eutrophic shallow lakes.
    Zhang X; Liu Z; Jeppesen E; Taylor WD
    Water Res; 2014 Mar; 50():135-46. PubMed ID: 24370657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased benthic algal primary production in response to the invasive zebra mussel (Dreissena polymorpha) in a productive ecosystem, Oneida Lake, New York.
    Cecala RK; Mayer CM; Schulz KL; Mills EL
    J Integr Plant Biol; 2008 Nov; 50(11):1452-66. PubMed ID: 19017132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulating pH effects in an algal-growth hydrodynamics model(1).
    James SC; Janardhanam V; Hanson DT
    J Phycol; 2013 Jun; 49(3):608-15. PubMed ID: 27007048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the biomass content in sediment on the sediment nutrient flux for a pulsed organic load.
    Wang YX; Li XY; Lee JH
    Mar Pollut Bull; 2008; 57(6-12):681-8. PubMed ID: 18282587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon mass balance methodology to characterize the growth of pigmented marine bacteria under conditions of light cycling.
    Johnston W; Cooney M; Schorlemmer A; Pohl S; Karl DM; Bidigare R
    Bioprocess Biosyst Eng; 2005 May; 27(3):163-74. PubMed ID: 15668759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Simulating and predicting of carbon cycling in typical wetland ecosystems].
    Zhang WJ; Tong CL; Wu JS; Xu MG; Song CC
    Huan Jing Ke Xue; 2007 Sep; 28(9):1905-11. PubMed ID: 17990529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological and molecular analysis of carbon source supplementation and pH stress-induced lipid accumulation in the marine diatom Phaeodactylum tricornutum.
    Mus F; Toussaint JP; Cooksey KE; Fields MW; Gerlach R; Peyton BM; Carlson RP
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3625-42. PubMed ID: 23463245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification, calibration and verification of the IWA River Water Quality Model to simulate a pilot-scale high rate algal pond.
    Broekhuizen N; Park JB; McBride GB; Craggs RJ
    Water Res; 2012 Jun; 46(9):2911-26. PubMed ID: 22480899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of acidification on the determination of organic carbon, total nitrogen and their stable isotopic composition in algae and marine sediment.
    Kennedy P; Kennedy H; Papadimitriou S
    Rapid Commun Mass Spectrom; 2005; 19(8):1063-8. PubMed ID: 15776498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.