BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 28311174)

  • 1. The effect of larval competition on development time and adult size in the seaweed fly, Coelopa frigida.
    Butlin RK; Day TH
    Oecologia; 1984 Jul; 63(1):122-127. PubMed ID: 28311174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Associations of enzymic and chromosomal polymorphisms in the seaweed fly, Coelopa frigida.
    Day TH; Dobson T; Hillier PC; Parkin DT; Clarke B
    Heredity (Edinb); 1982 Feb; 48(Pt 1):35-44. PubMed ID: 7042652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Male-specific genotype by environment interactions influence viability selection acting on a sexually selected inversion system in the seaweed fly, Coelopa frigida.
    Edward DA; Gilburn AS
    Evolution; 2013 Jan; 67(1):295-302. PubMed ID: 23289580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of an inversion system and the time interval between matings on postcopulatory sexual selection in the seaweed fly, Coelopa frigida.
    Blyth JE; Gilburn AS
    Heredity (Edinb); 2005 Aug; 95(2):174-8. PubMed ID: 15999137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic divergence and phenotypic plasticity contribute to variation in cuticular hydrocarbons in the seaweed fly
    Berdan E; Enge S; Nylund GM; Wellenreuther M; Martens GA; Pavia H
    Ecol Evol; 2019 Nov; 9(21):12156-12170. PubMed ID: 31832150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GENETIC CORRELATION BETWEEN A FEMALE MATING PREFERENCE AND THE PREFERRED MALE CHARACTER IN SEAWEED FLIES (COELOPA FRIGIDA).
    Gilburn AS; Foster SP; Day TH
    Evolution; 1993 Dec; 47(6):1788-1795. PubMed ID: 28568002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic variation at the alcohol dehydrogenase locus in natural populations of the seaweed fly, Coelopa frigida.
    Butlin RK; Collins PM; Skevington SJ; Day TH
    Heredity (Edinb); 1982 Feb; 48(Pt 1):45-55. PubMed ID: 7042653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Female mating behaviour, sexual selection and chromosome I inversion karyotype in the seaweed fly, coelopa frigida.
    Gilburn AS; Day TH
    Heredity (Edinb); 1999 Apr; 82 (Pt 3)():276-81. PubMed ID: 10336702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A large chromosomal inversion shapes gene expression in seaweed flies (
    Berdan EL; Mérot C; Pavia H; Johannesson K; Wellenreuther M; Butlin RK
    Evol Lett; 2021 Dec; 5(6):607-624. PubMed ID: 34917400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A chromosomal inversion polymorphism in Scandinavian populations of the seaweed fly, Coelopa frigida.
    Day TH; Dawe C; Dobson T; Hillier PC
    Hereditas; 1983; 99(1):135-45. PubMed ID: 6580286
    [No Abstract]   [Full Text] [Related]  

  • 11. Sex-biased phoretic mite load on two seaweed flies: Coelopa frigida and Coelopa pilipes.
    Gilburn AS; Stewart KM; Edward DA
    Environ Entomol; 2009 Dec; 38(6):1608-12. PubMed ID: 20021755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Female mate choice for large males in several species of seaweed fly (Diptera: Coelopidae).
    Crean CS; Dunn DW; Day TH; Gilburn AS
    Anim Behav; 2000 Jan; 59(1):121-126. PubMed ID: 10640374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraspecific molecular variation in the seaweed fly Coelopa frigida consistent with behavioural distinctness of British and Swedish populations.
    MacDonald C; Brookfield JF
    Mol Ecol; 2002 Sep; 11(9):1637-46. PubMed ID: 12207715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ADAPTIVE PHENOTYPIC PLASTICITY IN GROWTH, DEVELOPMENT, AND BODY SIZE IN THE YELLOW DUNG FLY.
    Blanckenhorn WU
    Evolution; 1998 Oct; 52(5):1394-1407. PubMed ID: 28565396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship among egg size, density and food level on larval development in the wood frog (Rana sylvatica).
    Berven KA; Chadra BG
    Oecologia; 1988 Feb; 75(1):67-72. PubMed ID: 28311835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cannibalism and early instar survival in a larval damselfly.
    Anholt BR
    Oecologia; 1994 Sep; 99(1-2):60-65. PubMed ID: 28313948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of breeding output for larval stage of Anopheles gambiae (Diptera: Culicidae): prospects for the creation and maintenance of laboratory colony from wild isolates.
    Tchuinkam T; Mpoame M; Make-Mveinhya B; Simard F; Lélé-Defo E; Zébazé-Togouet S; Tateng-Ngouateu A; Awono-Ambéné HP; Antonio-Nkondjio C; Njiné T; Fontenille D
    Bull Entomol Res; 2011 Jun; 101(3):259-69. PubMed ID: 21208505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DEVELOPMENTAL CONSEQUENCES OF AN EVOLUTIONARY CHANGE IN EGG SIZE: AN EXPERIMENTAL TEST.
    Sinervo B; McEdward LR
    Evolution; 1988 Sep; 42(5):885-899. PubMed ID: 28581183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Larval Competition on Extrinsic Incubation Period and Vectorial Capacity of Aedes albopictus for Dengue Virus.
    Bara J; Rapti Z; Cáceres CE; Muturi EJ
    PLoS One; 2015; 10(5):e0126703. PubMed ID: 25951173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of reduced minimum critical size as a response to selection for rapid pre-adult development in
    Sharma K; Mishra N; Shakarad MN
    R Soc Open Sci; 2020 Jun; 7(6):191910. PubMed ID: 32742680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.