These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
56 related articles for article (PubMed ID: 28311210)
1. Nitrogen, phenolic acids, and other feeding cues for salt marsh detritivores. Valiela I; Rietsma CS Oecologia; 1984 Aug; 63(3):350-356. PubMed ID: 28311210 [TBL] [Abstract][Full Text] [Related]
2. Nitrogen Assessments in a Constructed and a Natural Salt Marsh of San Diego Bay. Langis R; Zalejko M; Zedler JB Ecol Appl; 1991 Feb; 1(1):40-51. PubMed ID: 27755683 [TBL] [Abstract][Full Text] [Related]
3. Accumulation of proline and glycinebetaine in Spartina alterniflora Loisel. in response to NaCl and nitrogen in the marsh. Cavalieri AJ; Huang AH Oecologia; 1981 May; 49(2):224-228. PubMed ID: 28309313 [TBL] [Abstract][Full Text] [Related]
4. Relative contributions of bacteria and fungi to rates of degradation of lignocellulosic detritus in salt-marsh sediments. Benner R; Newell SY; Maccubbin AE; Hodson RE Appl Environ Microbiol; 1984 Jul; 48(1):36-40. PubMed ID: 16346598 [TBL] [Abstract][Full Text] [Related]
5. Nitrogen source for a detritivore: detritus substrate versus associated microbes. Findlay S; Tenore K Science; 1982 Oct; 218(4570):371-3. PubMed ID: 17739355 [TBL] [Abstract][Full Text] [Related]
6. The role of phenolic compounds and nutrients in determining food preference in greater snow geese. Gauthier G; Bédard J Oecologia; 1990 Oct; 84(4):553-558. PubMed ID: 28312973 [TBL] [Abstract][Full Text] [Related]
7. Periwinkle climbing response to water- and airbone predator chemical cues may depend on home-marsh geography. Carroll JM; Church MB; Finelli CM PeerJ; 2018; 6():e5744. PubMed ID: 30294513 [TBL] [Abstract][Full Text] [Related]
8. Salt tolerance and osmotic adjustment of Spartina alterniflora (Poaceae) and the invasive M haplotype of Phragmites australis (Poaceae) along a salinity gradient. Vasquez EA; Glenn EP; Guntenspergen GR; Brown JJ; Nelson SG Am J Bot; 2006 Dec; 93(12):1784-90. PubMed ID: 21642124 [TBL] [Abstract][Full Text] [Related]
9. The influence of salinity on the kinetics of NH Bradley PM; Morris JT Oecologia; 1991 Jan; 85(3):375-380. PubMed ID: 28312042 [TBL] [Abstract][Full Text] [Related]
10. The Role of Microbes in the Nutrition of Detritivorous Invertebrates: A Stoichiometric Analysis. Anderson TR; Pond DW; Mayor DJ Front Microbiol; 2016; 7():2113. PubMed ID: 28101083 [TBL] [Abstract][Full Text] [Related]
11. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Peterson BJ; Howarth RW; Garritt RH Science; 1985 Mar; 227(4692):1361-3. PubMed ID: 17793771 [TBL] [Abstract][Full Text] [Related]
12. EARLY LIFE-HISTORY OF MELAMPUS AND THE SIGNIFICANCE OF SEMILUNAR SYNCHRONY. Russell-Hunter WD; Apley ML; Hunter RD Biol Bull; 1972 Dec; 143(3):623-656. PubMed ID: 28368698 [TBL] [Abstract][Full Text] [Related]
13. Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China. Quan WM; Han JD; Shen AL; Ping XY; Qian PL; Li CJ; Shi LY; Chen YQ Mar Environ Res; 2007 Jul; 64(1):21-37. PubMed ID: 17306362 [TBL] [Abstract][Full Text] [Related]
14. The role of phenolic compounds and other plant constituents in feeding by Canada geese in a coastal marsh. Buchsbaum R; Valiela I; Swain T Oecologia; 1984 Aug; 63(3):343-349. PubMed ID: 28311209 [TBL] [Abstract][Full Text] [Related]
15. Cascading effects of predatory fish exclusion on the detritus-based food web of a lake littoral zone (Lake Vico, central Italy). Mancinelli G; Costantini M; Rossi L Oecologia; 2002 Nov; 133(3):402-411. PubMed ID: 28466209 [TBL] [Abstract][Full Text] [Related]
16. Temporal relationship between the deposition and microbial degradation of lignocellulosic detritus in a Georgia salt marsh and the Okefenokee Swamp. Benner R; Maccubbin AE; Hodson RE Microb Ecol; 1986 Sep; 12(3):291-8. PubMed ID: 24212682 [TBL] [Abstract][Full Text] [Related]
17. The influence of pH on concentrations of protein and phenolics and resource quality of decomposing floating leaf material of Nymphaea alba L. (Nymphaeaceae) for the detritivore Asellus aquaticus (L.). Kok CJ; Hof CH; Lenssen JP; van der Velde G Oecologia; 1992 Aug; 91(2):229-234. PubMed ID: 28313461 [TBL] [Abstract][Full Text] [Related]
18. Exploiting wild population diversity and somaclonal variation in the salt marsh grass Distichlis spicata (Poaceae) for marsh creation and restoration. Seliskar DM; Gallagher JL Am J Bot; 2000 Jan; 87(1):141-6. PubMed ID: 10636837 [TBL] [Abstract][Full Text] [Related]
19. Milk composition and flavor under different feeding systems: a survey of dairy farms. Yayota M; Tsukamoto M; Yamada Y; Ohtani S J Dairy Sci; 2013 Aug; 96(8):5174-83. PubMed ID: 23769370 [TBL] [Abstract][Full Text] [Related]
20. Sorption of pollutants by plant detritus: a review. Odum WE; Drifmeyer JE Environ Health Perspect; 1978 Dec; 27():133-7. PubMed ID: 367765 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]