These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 28311210)

  • 21. Milk composition and flavor under different feeding systems: a survey of dairy farms.
    Yayota M; Tsukamoto M; Yamada Y; Ohtani S
    J Dairy Sci; 2013 Aug; 96(8):5174-83. PubMed ID: 23769370
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sorption of pollutants by plant detritus: a review.
    Odum WE; Drifmeyer JE
    Environ Health Perspect; 1978 Dec; 27():133-7. PubMed ID: 367765
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Community composition and activity of anaerobic ammonium oxidation bacteria in the rhizosphere of salt-marsh grass Spartina alterniflora.
    Zheng Y; Hou L; Liu M; Yin G; Gao J; Jiang X; Lin X; Li X; Yu C; Wang R
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8203-12. PubMed ID: 27225476
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of salt and nitrogen on herbivore abundance: direct and indirect effects.
    Bowdish TI; Stiling P
    Oecologia; 1998 Jan; 113(3):400-405. PubMed ID: 28307825
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Tripartite Interaction Between Spartina alterniflora, Fusarium palustre, and the Purple Marsh Crab (Sesarma reticulatum) Contributes to Sudden Vegetation Dieback of Salt Marshes in New England.
    Elmer WH
    Phytopathology; 2014 Oct; 104(10):1070-7. PubMed ID: 24679153
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China.
    Yuan J; Ding W; Liu D; Kang H; Freeman C; Xiang J; Lin Y
    Glob Chang Biol; 2015 Apr; 21(4):1567-80. PubMed ID: 25367159
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of salinity and illumination on photosynthesis and water balance of Spartina alterniflora Loisel.
    Longstreth DJ; Strain BR
    Oecologia; 1977 Jan; 31(2):191-199. PubMed ID: 28309138
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stemflow chemistry: Effects on population dynamics of detritivorous mosquitoes in tree-hole ecosystems.
    Carpenter SR
    Oecologia; 1982 Apr; 53(1):1-6. PubMed ID: 28310595
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Growth of a salt marsh invertebrate on several species of marsh grass detritus.
    Agnew AM; Shull DH; Buchsbaum R
    Biol Bull; 2003 Oct; 205(2):238-9. PubMed ID: 14583550
    [No Abstract]   [Full Text] [Related]  

  • 30. Effects of drainage and soil organic content on growth of Spartina alterniflora (Poaceae) in an artificial salt marsh mesocosm.
    Padgett DE; Brown JL
    Am J Bot; 1999 May; 86(5):697-702. PubMed ID: 10330073
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of feeding salt-tolerant forage cultivated in saline-alkaline land on rumen fermentation, feed digestibility and nitrogen balance in lamb.
    Wang C; Dong KH; Liu Q; Yang WZ; Zhao X; Liu SQ; He TT; Liu ZY
    J Sci Food Agric; 2011 May; 91(7):1259-64. PubMed ID: 21328366
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cascading effects of predator-detritivore interactions depend on environmental context in a Tibetan alpine meadow.
    Wu X; Griffin JN; Sun S
    J Anim Ecol; 2014 May; 83(3):546-56. PubMed ID: 24329859
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proline and glycinebetaine accumulation by Spartina alterniflora Loisel. in response to NaCl and nitrogen in a controlled environment.
    Cavalieri AJ
    Oecologia; 1983 Mar; 57(1-2):20-24. PubMed ID: 28310151
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The response of plasma membrane lipid composition in callus of the halophyte Spartina patens (Poaceae) to salinity stress.
    Wu J; Seliskar DM; Gallagher JL
    Am J Bot; 2005 May; 92(5):852-8. PubMed ID: 21652466
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of Acid stress on aerobic decomposition of algal and aquatic macrophyte detritus: direct comparison in a radiocarbon assay.
    Schoenberg SA; Benner R; Armstrong A; Sobecky P; Hodson RE
    Appl Environ Microbiol; 1990 Jan; 56(1):237-44. PubMed ID: 16348097
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Leaf-conditioning by microorganisms.
    Bärlocher F; Kendrick B
    Oecologia; 1975 Dec; 20(4):359-362. PubMed ID: 28308709
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of time lag on non-living resource in a simple food chain.
    Mukherjee D; Ray S; Roy AB
    Biosystems; 1996; 39(2):153-7. PubMed ID: 8866052
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A small supply of high quality detritus stimulates the consumption of low quality materials, but creates subtle effects on the performance of the consumer.
    Larrañaga A; de Guzmán I; Solagaistua L
    Sci Total Environ; 2020 Jul; 726():138397. PubMed ID: 32320871
    [No Abstract]   [Full Text] [Related]  

  • 39. Species loss and nitrogen pollution alter litter decomposition dynamics in coastal salt marshes.
    Rippel TM; Tomasula J; Maguire B; Murphy SM; Wimp GM
    Oecologia; 2022 Dec; 200(3-4):479-490. PubMed ID: 36329313
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of pH on concentrations of protein and phenolics and resource quality of decomposing floating leaf material of Nymphaea alba L. (Nymphaeaceae) for the detritivore Asellus aquaticus (L.).
    Kok CJ; Hof CH; Lenssen JP; van der Velde G
    Oecologia; 1992 Aug; 91(2):229-234. PubMed ID: 28313461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.