These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28311396)

  • 1. Prey and predator emigration responses in the acarine system Tetranychus urticae-Phytoseiulus persimilis.
    Bernstein C
    Oecologia; 1984 Jan; 61(1):134-142. PubMed ID: 28311396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions in a tritrophic acarine predator-prey metapopulation system V: within-plant dynamics of Phytoseiulus persimilis and Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae).
    Nachman G; Zemek R
    Exp Appl Acarol; 2003; 29(1-2):35-68. PubMed ID: 14580059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foraging time and spatial patterns of predation in experimental populations : A comparative study of three mite predator-prey systems (Acari: Phytoseiidae, Tetranychidae).
    Zhang ZQ; Sanderson JP; Nyrop JP
    Oecologia; 1992 May; 90(2):185-196. PubMed ID: 28313713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavioral responses to prey density by three acarine predator species with different degrees of polyphagy.
    Zhang ZQ; Sanderson JP
    Oecologia; 1993 Nov; 96(2):147-156. PubMed ID: 28313409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal within-plant distribution of the spider mite Tetranychus urticae and associated specialist and generalist predators.
    Walzer A; Moder K; Schausberger P
    Bull Entomol Res; 2009 Oct; 99(5):457-66. PubMed ID: 19159502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Population dynamics of interacting predatory mites, Phytoseiulus persimilis and Neoseiulus californicus, held on detached bean leaves.
    Walzer A; Blümel S; Schausberger P
    Exp Appl Acarol; 2001; 25(9):731-43. PubMed ID: 12206584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial scale of aggregation in three acarine predator species with different degrees of polyphagy.
    Zhang ZQ; Sanderson JP
    Oecologia; 1993 Oct; 96(1):24-31. PubMed ID: 28313749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How to analyse prey preference when prey density varies? A new method to discriminate between effects of gut fullness and prey type composition.
    Sabelis MW
    Oecologia; 1990 Mar; 82(3):289-298. PubMed ID: 28312701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant species modifies the functional response of Phytoseiulus persimilis (Acari: Phytoseiidae) to Tetranychus urticae (Acari: Tetranychidae): implications for biological control.
    Skirvin DJ; Fenlon JS
    Bull Entomol Res; 2001 Feb; 91(1):61-7. PubMed ID: 11228589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions in a tritrophic acarine predator-prey metapopulation system IV: effects of host plant condition on Tetranychus urticae (Acari: Tetranychidae).
    Nachman G; Zemek R
    Exp Appl Acarol; 2002; 26(1-2):43-70. PubMed ID: 12475076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small scale spatial heterogeneity influences predation success in an unexpected way: Model experiments on the functional response of predatory mites (Acarina).
    Kaiser H
    Oecologia; 1983 Feb; 56(2-3):249-256. PubMed ID: 28310202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Rao-Blackwellized particle filter for joint parameter estimation and biomass tracking in a stochastic predator-prey system.
    Martín-Fernández L; Gilioli G; Lanzarone E; Miguez J; Pasquali S; Ruggeri F; Ruiz DP
    Math Biosci Eng; 2014 Jun; 11(3):573-97. PubMed ID: 24506552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A functional response model of a predator population foraging in a patchy habitat.
    Nachman G
    J Anim Ecol; 2006 Jul; 75(4):948-58. PubMed ID: 17009758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disentangling mite predator-prey relationships by multiplex PCR.
    Pérez-Sayas C; Pina T; Gómez-Martínez MA; Camañes G; Ibáñez-Gual MV; Jaques JA; Hurtado MA
    Mol Ecol Resour; 2015 Nov; 15(6):1330-45. PubMed ID: 25824504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disease prevalence and transmission of Microsporidium phytoseiuli infecting the predatory mite, Phytoseiulus persimilis (Acari: Phytoseiidae).
    Bjørnson S; Keddie BA
    J Invertebr Pathol; 2001 Feb; 77(2):114-9. PubMed ID: 11273691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary dynamics of prey exploitation in a metapopulation of predators.
    Pels B; de Roos AM; Sabelis MW
    Am Nat; 2002 Feb; 159(2):172-89. PubMed ID: 18707412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reproducing during Heat Waves: Influence of Juvenile and Adult Environment on Fecundity of a Pest Mite and Its Predator.
    Tscholl T; Nachman G; Spangl B; Serve HC; Walzer A
    Biology (Basel); 2023 Apr; 12(4):. PubMed ID: 37106755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ADAPTIVE RESPONSES OF PREDATORS TO PREY AND PREY TO PREDATORS: THE FAILURE OF THE ARMS-RACE ANALOGY.
    Abrams PA
    Evolution; 1986 Nov; 40(6):1229-1247. PubMed ID: 28563514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Encounters in predator-prey systems: a simple discrete model.
    Voit EO
    Biosystems; 1984; 17(1):57-63. PubMed ID: 6743794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density-dependent effects of prey defences.
    Jeschke JM; Tollrian R
    Oecologia; 2000 May; 123(3):391-396. PubMed ID: 28308594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.